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The aim of this article is to initiate a discussion about core
open problems in optimization and how they should be shared
and discussed in our community.

1 Introduction

Optimization as a field was not driven by open problems.
Instead, visionaries like Tyrrell Rockafellar, Boris Polyak,
Arkadi Nemirovski and Yurii Nesterov, among many oth-
ers, shaped the field by exploring questions that today are
at the core of optimization theory and algorithms. Later
generations (including the author’s) look to their work with
admiration and when seeking inspiration.

With the recent explosion of research in optimization, par-
ticularly driven by optimization’s profound impact on mod-
ern machine learning, the field has expanded to the extent
that it is hard to imagine engineering and computer science
students going through their college education without learn-
ing about (stochastic) gradient descent.

As the field evolves in different directions, there are often
rather simple-looking problems that appear well-understood
to an untrained eye, yet many questions around them re-
main. This article is an effort to begin the conversation
around what open problems are at the core of our field and
are worth exploring, and to motivate other optimization re-
searchers to contribute their own problems that they would
like to see solved. The provided list of questions is necessar-
ily biased by my own taste and experience. For those readers
who disagree that the community should work on them, it
is an invitation to provide their own open questions in talks,
expository articles and research papers.

2 A Case for Recognized Open Problems

There is something to be said about the existence of rec-
ognized open problems and how they may impact both the
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development of our field and the recognition that work ad-
dressing them receives. For the former, there is a recent
example that I believe illustrates well my point. Consider
the very basic problem of zero-sum (simplex-simplex con-
strained) matrix games; namely, mingea, maxyen,, y ' Az,
where A € R™*" and A; = {z € R : z > 0,172 = 1},
1 € {m,n}, is the probability simplex. Up until recently, if
you had asked me! what is the oracle complexity, as mea-
sured by matrix-vector products, to find a solution to such
a matrix game with primal-dual gap at most € > 0, I would
have said 1/¢, without a second thought.

The belief that the answer should be 1/e is not without
a good reason; in fact, there is more than one good rea-
son. By now classical papers on upper bounds for solving
general min-max optimization and/or variational inequality
problems [75, 79] include zero-sum matrix games as one of
their main examples and have oracle complexity scaling with
1/e. On the lower bound side, under the ¢» geometry (note
that zero-sum games correspond to the ¢; geometry), known
lower bounds scale with 1/e. Further, in other related prob-
lem settings like smooth convex optimization, oracle com-
plexity of problems in the standard ¢; and ¢ geometries are
nearly? the same in their dependence on e [45, 54], so it
seems reasonable that the same phenomenon would transfer
to min-max settings, including the aforementioned bilinear
problems. Additionally, for zero-sum games in particular,
there is a lower bound of the order 1/e that rules out a spe-
cific class of “strongly uncoupled” algorithms motivated by
their use in the online learning community [25]. All this
evidence would thus suggest that 1/e should be the correct
answer.

As one could guess based on the prelude to this discussion,
surprisingly, this is not true—the oracle complexity for zero-
sum games, measured by the matrix-vector products, is lower
than 1/¢! This was shown in a very recent (posted online in
September 2025) paper [53]. More to the point, the authors
would likely not have worked on this problem were the ques-
tion of problem complexity not raised in a paper studying
lower bounds for this problem, posted just nine months ear-
lier [59]. This then raises the question of how many problems
in optimization remain open not because they are too chal-
lenging to solve, but because people with the “right” ideas
and techniques are not aware of them.

The second point here is about the recognition that work
resolving open problems receives. Experts will, of course, ap-
preciate seeing solutions to problems that they had known to
be open for a while. Experts will appreciate seeing them even
more so if they themselves had tried solving them. However,
not knowing that a problem had been open for quite some
time and not knowing that many people in our community
had tried solving it can lead to insufficient appreciation from
future readers and students, especially if the solution turns
out to be “simple” (as many solutions are, in retrospect).
Here are some examples.

Lor almost any of my colleagues who had worked on oracle complex-
ity of optimization; I have personally asked some of them!
2j.e., up to a logarithmic factor.

Obtaining a fully parameter-free method for smooth
strongly convex optimization while retaining optimal oracle
complexity had been open for quite some time, and not for
a lack of trying. How to relax the knowledge of the Lips-
chitz constant of the gradient is reasonably clear from stan-
dard analyses of accelerated gradient descent and its variants
(e.g., [78, 41, 35, 23, 93, 1])—primarily because it is used in
a specific inequality involving two subsequent algorithm iter-
ates, making it possible to evaluate and adjust the Lipschitz
constant estimate. However, how to remove the knowledge
of the strong convexity modulus is much less clear. The
reason is that the standard analysis applies inequalities de-
rived from the definition of strong convexity involving the
function minimizer—which is, of course, unknown—and so
the inequality cannot be verified to adjust the modulus es-
timate. We still, in fact, do not have “direct” methods for
solving smooth strongly convex optimization problems that
are parameter-free and provably oracle complexity-optimal.
There is some evidence that such “direct” methods may be
impossible, at least for a specific class of algorithms that in-
cludes Nesterov’s accelerated method [78] and its variants;
see, for instance, [3, Section 4.1].

Instead, an alternative approach is to develop an “indi-
rect” parameter-free oracle-complexity optimal method for
minimizing the gradient norm of a smooth convex function
and restart it each time the gradient norm is halved. It is a
simple exercise (that I often give to students in my optimiza-
tion classes) to show that this is sufficient. However, until
recently, there was no oracle complexity-optimal method for
minimizing the gradient norm of a smooth convex function.
A natural approach using (a fixed) regularization is off by a
logarithmic factor [80], and for a while it was open whether
there existed an oracle complexity-optimal method in this
context, parameter-free or not. The first oracle complexity-
optimal method, due to [56], was not directly constructed
by a human, but computer-assisted. Moreover, even today
it is not clear whether this method could be made any-time
(i.e., convergent without fixing the number of iterations or
the target accuracy) or parameter-free.

Intriguingly, the regularization-based approach [80] can in
fact lead to an oracle complexity-optimal, parameter-free al-
gorithm for gradient norm minimization, but more care is
needed in constructing this method and appropriately choos-
ing and adjusting the amount of regularization to remove the
extraneous logarithmic factor. Such a result was obtained
only recently, for the Euclidean norm setting [60]. It seems
plausible that the result should similarly be extendible to
other £, norms, leveraging the results in [32], but this ques-
tion is still open.

Given all the history, surely, a lot of credit should go to
[60]. While experts understand this point (especially those
of us who had thought about this problem), the fact that
the problem did not exist as a “recognized open problem”
obscures the reality that many researchers in our field made
unsuccessful attempts at this problem, over many years.

On a related note, the existence of explicit, recognized
open problems sidesteps the criticisms arising from solutions
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that turn out to be, often counter-intuitively, rather simple-
looking. In my own work, some examples are a positive result
for parallelizing a class of convex optimization problems (go-
ing against 30 years of research establishing impossibility of
such results for broad classes of problems) [34] and efficient
algorithms for solving certain classes of fixed-point equation
problems with ezpansive operators [30].

3 Some Open Questions in Optimization

To make the discussion more concrete and “put my money
where my mouth is,” this section is devoted to the discussion
of some open problems in optimization, necessarily biased by
my own taste and interests, as previously disclosed.

3.1 Better understanding of computational
complexity of optimization

The study of information-based complexity of optimization
was initiated in the late 1970s and early 1980s [77, 92]. In
the considered model, the underlying question is how much
information about a problem needs to be inferred before the
problem can be solved to a target error. Most optimization
algorithms are oracle-based—that is, they can be fully de-
scribed by a sequence of updates in which the information
about the problem the algorithm attempts to solve is gained
by querying an “oracle” that reveals information based on
specific queries (e.g., value of the function, its gradient, or a
higher-order derivative at a query point). Thus, the study
of complexity has centered around “oracle complexity”. In
the oracle complexity model, one specifies a problem class,
an oracle type, and a notion of error set to some target ¢ > 0
(e = 0 would mean the problem is solved exactly). The ora-
cle complexity of a problem is then defined as the minimum
number of queries any algorithm must make on a worst-case
instance in the class to output a solution with error at most
€. Observe here the min-max nature of the oracle complexity
model: we take a minimum over all possible algorithms and
we take a maximum over problem instances.

For standard classes of problems (e.g., convex minimiza-
tion in standard f,-norm settings with weakly smooth ob-
jective functions) oracle complexity of optimization is con-
sidered well-understood, with matching upper and lower or-
acle complexity bounds; see, for instance [76, 77, 45]. While
oracle complexity has been highly valuable in understand-
ing the complexity of problems and algorithms, even within
the classes of problems whose oracle complexity is well-
understood, there remain questions that I believe are per-
tinent to their computational complexity and empirical per-
formance, as discussed below.

Between the two oracle complexities in nonsmooth

convex optimization. Consider the class of nonsmooth
convex optimization problems

i x 1

min f(), (1)

where B := {z € R? : ||z|2 < 1} is the unit Euclidean
ball centered at zero and f is a convex 1-Lipschitz function

(w.r.t. the £ norm). We discuss this problem in terms of its
first-order oracle complexity (it suffices to think about the
number of subgradient queries needed to solve this problem
to error € > 0), though there are more general lower bounds
that apply to any local® oracle.

Oracle complexity of the optimization problem in this
context, where the notion of error is the standard opti-
mality gap € = f(x) — mingep f(y), is well understood:
up to absolute constant factors, the oracle complexity is
min{dlog(1/e), 1/e2} [77, 45, 54]. This means that there
are both information theoretic lower bounds and algorithms
that match this complexity, up to constant factors. However,
the “low dimension/high accuracy” bound dlog(1/¢) and the
“high dimension/low accuracy” bound 1/€* are achieved by
quite different algorithms.

The low-dimension bound dlog(1/e) is attained by cut-
ting planes or ellipsoid-style algorithms*, whose implemen-
tations involve computationally expensive iterations; for ex-
isting methods [55, 81, 49, 62], the overall runtime is poly-
nomial, but high, of order at least d>log(1/¢)). On the other
hand, the high-dimension 1/¢? bound is attained by a sim-
ple algorithm with cheap iterations: projected subgradient
method (PsGD). The per-iteration complexity of PsGD for
simple feasible sets like B amounts to the computational ef-
fort needed to compute (or approximate) the objective’s sub-
gradient.

Interestingly, we do not have a way to interpolate mean-
ingfully between these two bounds using simple, subgradient-
style algorithms.” What is known is that demonstrating
complexity like dlog(1/€) for PsGD is impossible. This is
due to recently demonstrated memory-computation lower
bounds [70, 11, 20], which establish (among other results)
that any algorithm with oracle complexity dlog(1/€¢) must
require order-d?> memory in the worst case; PsGD only re-
quires order-d memory. What these lower bounds do not
rule out is a simple algorithm of “PsGD style” with oracle
complexity of the order, say, d/e. It is also worth noting
here that this line of work was, in fact, initiated by an open
problem published at the Conference on Learning Theory in
2019 [97]. This leads us to ask the question:

Is such a result possible?

Obtaining such a fast algorithm of subgradient-type would
be interesting for applications, for at least two reasons. First,
subgradient-type methods are easy to implement and test.
Second, for moderate-size problems and/or for a target error

3Here, a “local” oracle can be any oracle that, when queried at any
point & € B, returns only information about f pertaining to the point x
(e.g., function value, subgradient, or any-order Taylor approximation,
provided it exists).

4In fact, the dlog(1/€) oracle complexity bound is attained up to
constants by the center of mass method [77], which is not a polynomial-
time algorithm. Polynomial-time methods for this problem, which are
based on cutting planes or the inscribed ellipsoid, typically have slightly
higher (e.g., by a log or a poly-log factor) oracle complexity; a point
which we will ignore in the rest of this article.

50n the other hand, there are results that interpolate between these
bounds using the more computationally intensive cutting plane-style
methods [10].
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€ > 0 that is not too small compared to 1/d, the computa-
tional complexity of such an algorithm could be lower than
the complexity of either ellipsoid-style methods or the vanilla
PsGD.

Parallelism as a bridge between memory and com-
putation. Another related question here is how much can
really be ruled out regarding algorithms with d log(1/e€) or-
acle complexity. As mentioned earlier, existing memory-
computation lower bounds rule out algorithms with memory
that is lower than order-d?. But could there exist algorithms
that cleverly utilize this “high” memory, but are still rea-
sonably “simple”? For instance, could there be a parallel al-
gorithm, with order-d (or even poly(d)) many threads, each
of which is “simple” (meaning, PsGD-style), that exhibits
d log(1/e€) depth (number of parallel rounds of computation)?

There is some evidence that this idea may not be entirely
outlandish. In particular, such an approach is the premise of
survey descent [46], which shows quite promising numerical
performance, exhibiting empirically linear (i.e., geometrically
fast) convergence. Nevertheless, rigorous oracle complexity
has not been established® in the sense of this article, even
when we specialize to classes of well-behaved functions like
max-of-affine.

Relevant to this discussion are also lower bounds for par-
allelizing convex optimization. In the model introduced by
Nemirovski [74], an algorithm can make poly(d, 1/€) queries
in parallel in each round. By in parallel, we mean that
the queries asked in the same round can depend on previ-
ous queries and answers, but not on each other’s answers.
The oracle complexity in this context is then measured by
the required depth of algorithms—the number of sequen-
tial rounds needed to construct a solution with target er-
ror € > 0. Information theoretic lower bounds for this prob-
lem rule out reducing oracle complexity (or depth) below
min{d/3,1/€%} [74, 98, 33]. In other words, they do not rule
out results like the aforementioned one concerning dlog(1/¢)
depth within a method like survey descent. On the other
hand, algorithms that take advantage of parallelism to re-
duce the number of sequential rounds all have polynomial
dependence on 1/e (i.e., they do not converge linearly) [14,
38, 34]. Thus, none of these results lead to d log(1/¢) depth
for a subgradient-like algorithm. Of course, it would be even
more interesting if the complexity could be reduced to some
d* log(1/e), a € [1/3, 1) with poly(d, 1/€) queries per round;
say, to d'/3 log(1/e) (which would effectively match the lower
bound). Obtaining such a result with any method—not just
a subgradient-like method—or as conjectured in [14], ruling
such a result out entirely, appears fundamental to our un-

61t is relevant to mention here that [46] does provide some linear con-
vergence results, but not in the strong global sense discussed here. In-
stead, the guarantees are local (asymptotic, with no quantitative bound
on rate), they apply to a class of objectives expressible as the maximum
of smooth strongly convex functions, and the linear rate scales with the
minimum Lagrange multiplier associated with the problem, which may
be quite close to zero. Thus, there is no formal guarantee that the
depth of the algorithm would be even poly(d) log(1/e€), even in the
setting considered in [46].

derstanding of the complexity of this problem in the parallel
model of oracle complexity.

3.2 When and why do cyclic algorithms work?

Cyclic block coordinate methods rely on a simple idea: par-
tition the set of coordinates into blocks, and perform up-
dates over one block at a time, traversing all sets in the
partition over a period called a cycle. In the simplest form,
the partition is into single-coordinate sets, and we refer to
this as, simply, a cyclic coordinate method. There are dif-
ferent strategies for ordering the coordinates (blocks) in a
cyclic coordinate method. One can employ (any) determin-
istic ordering (typically just {1,2,3,...,d}). Alternatively,
one can employ a fixed random permutation generated at
the initialization of the method, or an independent random
permutation generated at the beginning of each cycle.

The most basic cyclic algorithms perform updates that
fully minimize the objective function over the selected (block
of) coordinate(s) in each cycle, keeping all other coordinates
fixed. We will refer to such a strategy as the ezxact cyclic
(block) coordinate descent. For some problems, the exact
coordinate minimization updates are easy to perform, often
in closed form, which is likely how those algorithms came
to be. Some classical (and widely used) examples are the
method of Kaczmarz for solving linear systems (which can
be interpreted as exact cyclic coordinate descent on the dual
problem) [52] and Osborne’s method for a type of precondi-
tioning procedure called matrix balancing [83].

In addition to being simple, cyclic coordinate descent (and
its closely related variants) are highly effective in practice
and preferred over alternative methods. For instance, cyclic
coordinate methods are the default solvers in software pack-
ages for large-scale statistical learning like GLMNet [40] and
SparseNet [73], while the method of Osborne [83] is the de-
fault preconditioning method for eigenvalue computation of
non-symmetric matrices in all major software packages in-
cluding Python, R, Julia, MATLAB, LAPACK, and EIS-
PACK [82, 51, 72, 2, 88, 37, 71].

Despite their wide use, the theory of cyclic methods is
still largely lacking. The first global complexity results for
any nontrivial class of problems and cyclic methods were
only obtained in the past decade, starting with [7]. These
results—which are for cyclic gradient descent and its accel-
erated variant—are largely unsatisfying, as their worst-case
complexity is worse than the worst case complexity of vanilla
(single block) gradient descent and its acclerated version by
poly(m) factors, where m is the number of blocks. Note that
m = d for cyclic coordinate descent! Moreover, such de-
pendence appears unavoidable, due to lower bounds in [91],
which apply even to simple convex quadratics. This dimen-
sional dependence was shown to be fixable for at least some
quadratics (but not more generally), using random permu-
tation of the cyclic ordering [43, 61, 100]. This largely left
open the question of how much worse cyclic methods can
be than their corresponding “vanilla” baselines, in the worst
case sense.

The work by my group [89, 18, 64, 17] brought a new per-
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spective on the convergence rate of cyclic methods, by replac-
ing traditional (coordinate) Lipschitz conditions with a more
“geometric” Lipschitz condition that captures how changes
across different coordinates impact one another. This geo-
metric Lipschitz condition (a full description is omitted here
for brevity) loses no generality: it is implied by the more
traditional Lipschitz assumptions, but it can give a more
fine-grained picture of a considered problem instance. An
additional insight from this work, beyond generalizing the
Lipschitz conditions, is that for cyclic methods it appears
important to look at the progress of algorithms across a full
cycle of updates, in the aggregate, anchoring progress to ei-
ther the beginning or the end of the cycle. This is in contrast
to randomized block coordinate methods or traditional full-
vector-update methods, which normally track progress across
a single iteration/update.

The results from this line of work yielded the first cyclic
method that provably addressed the broad class of varia-
tional inequalities with monotone Lipschitz operators [89].
This line of work further improved the worst-case scaling
with the number of blocks m compared to baseline meth-
ods for convex optimization: specifically, the improvement
was by a factor /m for unaccelerated methods like gradient
descent [89], and by a factor m!/* for accelerated methods
[64]. This line of work further gave the first global complexity
results for cyclic gradient descent applied to smooth noncon-
vex minimization problems (and its proximal operator-based
generalization for composite problems) [18]. It also led to
more fine-grained complexity characterizations for related in-
cremental gradient methods [17].

Common to all these results is that the worst-case com-
plexity scales polynomially with the dimension d (or, more
generally, the number of coordinate blocks), and they depend
crucially on Fuclidean arguments. There are only two excep-
tions that I am aware of. The first one is [19], which gave a
primal-dual cyclic block coordinate algorithm for extensive-
form matrix games; the worst-case complexity is shown to
be no worse than the complexity of the mirror-prox base-
line (but not necessarily better). The second is the very
recent result for the complexity of classical Osborne’s algo-
rithm [16]—a method that resisted any meaningful complex-
ity analysis for decades—for which we proved it runs in near-
linear time in the input size, which is effectively the best we
could hope for. Osborne’s algorithm can be interpreted as
an exact cyclic coordinate descent on a certain log-sum-exp-
type function.

What is interesting about these two examples is that both
correspond to problems with natural extreme geometries: /1
and f,,. On the other hand, for the ¢, geometry and our
most basic problem—convex quadratics—we know there are
“bad” worst-case examples for which cyclic algorithms (or, at
least, cyclic gradient descent) do not work well. This raises
the question:

Do cyclic methods have an edge in naturally extreme
geometries like £1 and lso ?

Note that, if true, this would also explain, at least par-

tially, the success of cyclic methods in statistical learning
tasks solved by SparseNET and GLMNet, since the induced
geometry in those tasks (through regularization like LASSO)
is typically £;.

Another point here is that beyond the aforementioned re-
sult regarding Osborne’s algorithm or the special case with
two blocks (alternating minimization) [6, 36], we effectively
do not have any theory for convergence of exact cyclic coor-
dinate descent. Note that it is usually exact cyclic coordinate
descent—not cyclic gradient descent or any of its variants—
that is used in practice and is empirically effective. Exact
cyclic coordinate descent was also the original motivation
for the initial results in [7]. Hence another generally open
question here is:

How does taking exact minimization steps in exact cyclic
descent benefit convergence?

Here, it is particularly interesting to explain how/why ex-
act minimization updates are generally more beneficial than
coordinate gradient updates. Observe immediately here that
if a problem is coordinate-separable, then one full cycle of the
algorithm solves the problem to zero error. Thus, it appears
that any reasonable analysis should depend on how the co-
ordinates are coupled to each other and give a bound on the
number of iterations equal to one in the coordinate-separable
case (i.e., when there is no coupling).

3.3 Complexity of min-max optimization, root-
finding, and fixed-point equations
Consider the following three families of problems:

1. (Unconstrained) Min-max optimization:

min max f(x,vy), 2
iy max (@, ) 2)
where X C R™,; )Y C R™ are convex compact nonempty
sets and f is smooth (gradient-Lipschitz).

2. Root finding: given a compact convex nonempty set Z C
R? and oracle access to a Lipschitz continuous operator
F: Z — R? such that z — F(z) € Z for all z € Z, find
z* € Z such that F(z*) = 0; and

3. Fixed-point equation: given a compact convex
nonempty set Z C R? and oracle access to a Lipschitz
continuous operator T' : Z — Z, find z* € Z such that
T(z*) = z*.

The above problems can be stated (and have been extensively
studied) in more general forms (e.g., unconstrained versions,
non-Euclidean spaces), but for the present discussion the
above formulations are convenient, particularly when map-
ping between the different problem classes. The rationale for
the compactness assumption for the sets X', ), Z is that, un-
der the stated assumptions, it ensures existence of solutions
(via Brouwer’s fixed-point theorem [13], and due to relation-
ships between these problems we will discuss momentarily),
so we do not need to worry about these problems being po-
tentially ill-posed.
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Consider the following notion of e-approximation for the
min-max optimization problem in (2), where ¢ > 0. De-
fine first Gx(z,y) = —llx(x — Vo f(x,¥)), Gy(z,y) =
y — Hy(y + Vyf(x,y)), where II denotes the orthogonal
projection operator and Vg, V,, are the gradients w.r.t. the
x-argument and the y-argument, respectively. We say that
(xe, ye) € X x ) is an e-approximate solution to (2) if

r@y) = G (@ yol2 + 1Gy @yl < .

The quantity r(x,y) is also sometimes referred to as the
natural residual [39]. The condition r(x,y) < € can be in-
terpreted as (or, more precisely, it directly implies the stan-
dard notion of)) e-approximate stationarity, which for convex-
concave problems further implies other standard notions of
error like the primal-dual gap; see, e.g., [29] for a relevant
discussion on these implications. Approximate versions of
root-finding problems and fixed point equations are defined
in a natural way for € > 0 as such points z. € Z for which
| F(ze)|l, < €and ||T(zc) — zc||2 < €, respectively.

Now let us discuss the relationship between the three
stated problems. First, min-max optimization is captured
by root-finding problems, because we can stack x,y into a
d = m + n dimensional vector z and define F(z) as the
stacked vector comprised of Gx(z, y) and Gy (x,y). Clearly,
in this case, [|[F(2)|l, = r(z,y) and so |F(2)|, < € if
and only if r(x,y) < ¢ for z = (z7,y")T. Second, for
these problems as stated, root finding is equivalent to solving
fixed-point equations. To see this, given either F' or T for
root finding or fixed-point equations respectively, consider
T(z) = z — F(z). Then, clearly, for any ¢ > 0 and any
z € Z, ||[F(x)|, < eif and only if || T(z) — 2|, <e. Since T
is Lipschitz-continuous and self-maps a convex compact set,
Brouwer’s fixed-point theorem [13] ensures the existence of a
fixed point (2* € Z such that T'(2*) = z*), which in turn, by
equivalence, ensures the existence of a root of F', and which
by specialization ensures the existence of a solution to (2).

When additional assumptions on the problems are im-
posed (e.g., if we assume the objective in (2) is convex-
concave, or if we assume the operator F' is monotone, or
if we assume T is 1-Lipschitz—a.k.a. nonexpansive), these
problems are known to be tractable, that is solvable in time
polynomial in both 1/¢ and the parameters describing the
problem, and their complexity is fairly well understood. On
the other hand, without further assumptions, these problems
become (or, at least, are conjectured to become) computa-
tionally intractable.

In particular, consider our previously introduced class of
fixed-point equations, and let D be the diameter of Z and let
~ be the Lipschitz constant of T'. There is a recently demon-
strated lower bound result establishing, for sufficiently large
but constant v > 1, a worst-case oracle complexity exponen-
tial in dimension for solving the associated fixed-point equa-
tion problem to error € > 0 [4]”. This lower bound applies

"There is a much older lower bound for the £, case of this problem
due to [47] that similarly established worst-case exponential oracle com-
plexity that kicks in already at v > 1 + ce/D for a universal constant
c>0.

even under the smoothed analysis framework [90], meaning
that even if the instance space is slightly perturbed and we
look at the suitable “average case” under this perturbation,
the problem remains exponentially hard.

On the other hand, my recent results [30] showed that as
long as v < 14¢/D (and not trivially close to this bound), the
oracle complexity of finding a z € Z with || T'(z) — z||, < €is
polynomial. Further, this result extends to other norms and
even some geodesic metric spaces. An interesting question
that arises here is

Is there a phase transition in oracle complexity of solving
fized-point equations to error € > 0 occurring at
y=1+4¢/D?

The same paper [30] introduced a class of a-gradually ex-
pansive operators, defined as operators that satisfy, for all
z,weZ:

IT(2) = T(w)]

amin z)—z w) —w 3
< (14 ORnlTC) 2L T —wldy gy O

Such operators are (14«)-Lipschitz continuous and their Lip-
schitz constant can reach v = 1 + «. Interestingly, as shown
n [30], the associated (e-approximate) fixed-point equation
problems remain polynomial time solvable for a < v/2 — 1,
bringing the Lipschitz constant of T" up to anything smaller
than (but not trivially close to) v/2. Given how quickly and
how computationally hard the problem becomes for v > 1,
it seems reasonable to ask

For what other classes of fixed-point equations with v > 1 is
polynomial oracle complexity attainable?

Answers to such questions have immediate implications
for root-finding problems, at least as defined above, due to
the discussed equivalence. The root-finding problems were
defined above in relation to fixed-point equations to ensure
existence of solutions. But this is not necessary, and it may
be possible to guarantee existence (so the problem is well-
posed) even without imposing compactness or boundedness
assumptions on Z. This whole area appears interesting in its
own right due to further connections to equilibrium problems
like variational inequalities. An example of a condition that
ensures tractability in this case is the weak Minty condition
[31], but it is not known whether further (strict) generaliza-
tions (i.e., not just extending the value of the associated pa-
rameter, but defining a strictly larger problem class) of such
a condition while retaining tractability are possible. This is
yet another possible direction for future research.

Finally, the complexity of min-max optimization (2) with
general, possibly nonconvex-nonconcave smooth objectives,
is not yet well understood. One would guess that the hard-
ness stemming from the exponential oracle complexity of
fixed-point equations would transfer to this setting, but we
do not yet have such lower bounds that are specific to stan-
dard min-max optimization problems as stated in (2). This
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is because the class of fixed-point equation problems is larger
than the class of min-max optimization problems, so not ev-
ery fixed-point equation can be mapped back to a problem
as stated in (2). Instead, existing exponential oracle com-
plexity lower bounds for min-max optimization like [8, 26]
only apply to problems in which the feasible set for (x,vy) is
not a product space—instead, the constraints for the primal
variables  and the dual variables y are coupled. Thus, one
of the basic questions to address here and that seems within
reach is

Is oracle complexity of (2) exponential in dimension?®

Finally, given the centrality of (2) to problems in game the-
ory and their more recent relevance to machine learning (par-
ticularly within the realm of adversarial training) [24], the
general exploration of structural properties that could make
such problems tractable would be of interest. It is worth-
while to mention here some existing examples, such as finding
second-order stationary points for unconstrained min-max
problems with bounded objectives [69], finding first-order
stationary points for one-side tractable problems (e.g., where
the primal/dual is convex/concave or satisfies dominance
conditions like e.g., Polyak-Lojasiewicz condition) or under
“interaction-dominant” conditions—see the recent work [22]
(and references therein) for an overview—and approximating
the primal-dual gap for distributionally robust optimization
problems arising from generalized linear models [63].

3.4 Local error bounds in learning problems

The study of local error bounds is central to optimization
theory. Broadly speaking, local error bounds are conditions
pertaining to optimization problems that establish bounded-
ness of distance to target solutions (e.g., optima) as a func-
tion of some problem residual that can typically be tracked
or bounded in the analysis of optimization algorithms (e.g.,
optimality gap, gradient norm or natural residual). For in-
stance, if r is a residual function (a nonnegative-valued func-
tion that is equal to zero if and only if @ is a target solution)
and S denotes the set of target solutions, a typical local error
bound would look like

pdist(x, Z2)” < r(x), (4)

where ¢ > 0,v > 0 are the local error bound parameters
(e.g., v = 2 for locally “quadratic growth”).

The upshot is that such conditions can ensure that once a
suitable problem residual is driven to zero by an optimiza-
tion algorithm, the iterates themselves converge to the set of
optima. They also play a central role in establishing linear
convergence of algorithms; at least, this is true for specific
local error bounds like “sharpness” and a related Polyak-
Lojasiewicz condition—see, e.g., [87] and references therein.

The study of local error bounds dates back to the work
of Hoffman on solving systems of linear equations from the
1950s [48] and featured prominently in optimization theory
research over the subsequent decades [5, 66, 65, 12, 68, 67,

8This is a known open problem, also stated in [8].

85, 15, 86, 84]. What is common to these results is a focus on
proving, for a large class of problems (e.g., quadratic prob-
lems, linear programs, complementarity problems), that for
some fixed v (e.g., v =1 or v = 2), u is strictly positive.

While technically this ensures convergence of the iterates
to optima, it does not tell us much about how fast this hap-
pens, particularly if i can be arbitrarily close to zero. In fact,
for most of the problems for which general local error bounds
have been established, p can be exponentially small in the
problem dimension. For this reason, to my knowledge, many
optimization researchers studying global complexity proper-
ties of optimization algorithms did not consider local error
bounds to be particularly useful in the study of complexity.

In the more recent literature, different types of local error
bounds started resurfacing in the study of machine learning
problems. For instance, a type of local error bound that
applies to problems in matrix completion, matrix sensing,
and related problems, is the main reason such problems are
solvable despite their inherent nonconvexity [50, 9, 99].

In my own work (with students and collaborators), proving
that local error bounds hold for different stochastic, noncon-
vex optimization problems arising in learning theory (specif-
ically, in learning generalized linear models and single-index
models) has proven crucial to establishing their solvability
under certain distributional assumptions [94, 96, 102, 95,
101]. On the other hand, such problems are known to be
computationally intractable if no distributional assumptions
are imposed [28, 42, 27]. Interestingly, we showed how to
solve many such problems by solving them on the Euclidean
sphere [95, 101, 96, 102]—which, itself, is a nonconvex set.
Thus, a general path forward in addressing optimization
problems arising in machine learning may be addressed by
asking and answering:

If a problem appears solvable (in a formal learning sense,
and at least based on empirical evidence), does it satisfy a
local error bound?

It is my hope that the optimization community will once
again pick up on this general research area, as optimization
theorists are uniquely qualified to lead the charge on estab-
lishing such local error bound results.

4 Where to go from here?

This article collected a few open questions that I have been
thinking about and genuinely care about. More broadly,
I believe our community would benefit from being more
intentional—and more open—about sharing the open prob-
lems that can move the field forward. Beyond formulating
and discussing open questions within research papers, here
are a few concrete suggestions for how we might proceed:

1. T would like to see more senior and widely recognized
members of the optimization community write exposi-
tory pieces articulating what they view as the central
open questions in the field—particularly questions that
have remained unresolved despite years of sustained ef-
fort.
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2.

Ack
port

Major optimization meetings that draw broad partici-
pation, such as STAM-OP, ISMP, and ICCOPT, could
include dedicated sessions on open problems. These
could take the form of panels (with speakers explicitly
prompted to discuss key open directions) or research-
style talks focused on presenting and contextualizing
compelling open questions.

It would also be valuable to create dedicated venues
for short expository articles centered on open prob-
lems. For example, in theoretical computer science,
Conference on Learning Theory (COLT) has an open-
problems track (which, incidentally, has also featured
optimization-related questions; see, e.g., [21, 57, 44, 58,
97]). Perhaps flagship optimization journals such as
SIOPT and Mathematical Programming could consider
introducing similar tracks.
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Bulletin

Email items to siagoptnews@lists.mcs.anl.gov for consider-
ation in the bulletin of forthcoming issues.

Event Announcements

H SIAM Conference on Optimization

e 2-5 June 2026
282

Edinburgh, United Kingdom

This is the conference of the STAM Activity Group on Opti-
mization. The SIAM Conference on Optimization showcases
the latest research in the theory, algorithms, software, and
applications of optimization.

It brings together mathematicians, operations researchers,
computer scientists, engineers, software developers, and
practitioners, fostering an ideal environment for exchanging
new ideas and addressing significant challenges.

The conference serves as a platform for specialists and
users of optimization in academia, government, and industry
to collaborate and share insights.

Important dates:

13 November 2025: Submit Now: Minisymposium Pro-
posal Submission Deadline Extended

13 November 2025: Submit Now: Contributed Lecture,
and Minisymposium Presentation Abstract Submission
Deadline

2 March 2026: Apply Now: Travel Support Application
Deadline

5 May 2026: Early Registration Deadline

URL: https://www.siam.org/conferences-events/
siam-conferences/op26

IFORS 2026
- 12-17 July 2026
Vienna, Austria

The 24th Conference of the International Federation of
Operational Research Societies will take place in Vienna,
Austria from 12 to 17 July 2026.

The IFORS 2026 will take place in the main building of
the University of Vienna, Universitétsring 1, 1010 Vienna
Important dates
1 December 2025: Opening of abstract submissions

15 March 2026: Deadline for abstract submissions
25 April 2026: Early bird registration deadline
25 April 2026: Final registration deadline for authors

URL: https://wuw.ifors2026.at/home


siagoptnews@lists.mcs.anl.gov
https://www.siam.org/conferences-events/siam-conferences/op26
https://www.siam.org/conferences-events/siam-conferences/op26
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Books
Practical Nonconvex Nonsmooth
e Optimization
Novsootk OFTMZATION 1)y, Frank E. Curtis and Daniel P. Robin-
son

Publisher: SIAM
ISBN: 978-1-61197-858-2
omarmmn | Pyblished: 2025

; Series: MOS-SIAM Series on Optimization

ABouT THE BOOK: This book provides a clear and ac-
cessible introduction to an important class of problems in
mathematical optimization: those involving continuous func-
tions that may be nonconvex, nonsmooth, or both. The au-
thors begin with an intuitive treatment of theoretical foun-
dations, including properties of nonconvex and nonsmooth
functions and conditions for optimality. They then offer a
broad overview of the most effective and efficient algorithms
for solving such problems, with a focus on practical applica-
tions in areas such as control systems, signal processing, and
data science.

The book focuses on problems defined over finite-
dimensional real-vector spaces, requiring no extensive back-
ground in functional analysis.

It begins with nonconvex smooth optimization rather than
convex optimization, making the material more approach-
able for readers without extensive prior knowledge of convex
analysis and optimization.

The book employs a conversational tone and places lengthy

technical proofs at the end of each chapter, helping readers
grasp the main ideas before diving into the details of techni-
cal proofs.
AUDIENCE: This book is intended for advanced undergrad-
uates and graduate students who are familiar with basic op-
timization concepts and are ready to explore more complex
problems. A background in calculus, real analysis, linear
algebra, and probability is recommended. It is appropriate
for an introductory graduate-level course in continuous opti-
mization. Practitioners and early career researchers will also
find the book useful.

gramming

Primal
Heuristics
in Integer

Programming

Domenico Salvagnin

Publisher: Cambridge University Press
elSBN: 9781009574792

Published: 2025

DOI: 10.1017/9781009574792

Timo Berthold
Andrea Lodi
Domenice Salvagnin

ABOUT THE BOOK: Primal heuristics guarantee that fea-
sible, high-quality solutions are provided at an early stage
of the solving process, and thus are essential to the success
of mixed-integer programming (MIP). By helping prove op-
timality faster, they allow MIP technology to extend to a
wide variety of applications in discrete optimization.

Primal Heuristics in Integer Pro-

by Timo Berthold, Andrea Lodi, and

This first comprehensive guide to the development and
use of primal heuristics within MIP technology and solvers
is ideal for computational mathematics graduate students
and industry practitioners. Through a unified viewpoint,
it gives a unique perspective on how state-of-the-art results
are integrated within the branch-and-bound approach at the
core of the MIP technology.

It accomplishes this by highlighting all the required knowl-
edge needed to push the heuristic side of MIP solvers to their
limit and pointing out what is left to do to improve them,
thus presenting heuristic approaches for MIP as part of the
MIP solving process.

AUDIENCE: This book is of interest to students, researchers,
and practitioners in the field of Mixed Integer and Discrete
Optimization as it provides a systematic view on the struc-
ture and dynamics of heuristics used in modern solvers, both
commercial and open-source.
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Chair’s Column

The past three years have been a period of continued
progress and consolidation for our SIAM Activity Group
on Optimization (SIAG/OPT). Optimization continues to
evolve through major research developments—ranging from
scalable stochastic methods to enhanced capabilities in
mixed-integer nonlinear programming, and early progress at
the interface of optimization and quantum computing. These
innovations reinforce optimization’s foundational role in sci-
entific computing, data science, and machine learning.

Membership.

STAG/OPT remains one of STAM’s largest and most ac-
tive activity groups. Although membership decreased after
the pandemic, it rebounded around the 2023 STAM Con-
ference on Optimization, and we anticipate significant fur-
ther growth in 2026. The group continues to strengthen
its international reach and maintain strong links with re-
lated SIAGs, particularly Computational Science and Engi-
neering, Data Science, Applied and Computational Discrete
Algorithms (ACDA), Imaging Science, and Mathematics of
Planet Earth.

Sponsored Events.

Over the 2023-2025 period, we co-sponsored the MOPTA
conference at Lehigh University each year. MOPTA has
drawn roughly 140 participants annually and offers the com-
munity a valuable platform for interaction, particularly be-
cause it is not affiliated with other professional societies. Ad-
ditionally, the 2023 Gene Golub SIAM Summer School, also
at Lehigh, emphasized optimization with a focus on quantum
computing, further supporting the training of early-career re-
searchers.

Prizes.

A major accomplishment of this board term was success-
fully establishing a permanent endowment for the SIAG
on Optimization Test of Time Award. Through a $25,000
fundraising effort supported by numerous institutions and
individuals, we ensured the long-term sustainability of this
important recognition for impactful research contributions in
optimization.

We are delighted to share excellent news regarding our prize
nomination cycle. We have received an exceptionally strong
set of nominations for all three 2026 SIAG/OPT prizes:

e STAG on Optimization Best Paper Prize: 23 nomina-

tions

e SIAG on Optimization Early Career Prize: 14 nomina-
tions

e STAG on Optimization Test of Time Award: 20 nomi-
nations

This is a truly phenomenal response and a testament to
the engagement and commitment of our community. Thank
you to everyone who took the time to identify deserving col-
leagues and submit nominations. Your efforts ensure that our

STAG continues to recognize and celebrate excellence across
the spectrum of optimization research and impact. We look
forward to celebrating the awardees together in Edinburgh!

2026 SIAM Conference on Optimization.

Following an open international call, the University of Ed-
inburgh was selected as host for the 2026 STAM Conference
on Optimization, which will occur during June 2-5, 2026.
The event will feature a diverse and distinguished lineup
of plenary speakers and two mini-tutorials, with strong at-
tention to inclusiveness across research areas and origins of
speakers.

The conference will take place in the Old Town Campus
which lies in the heart of the University quarter and is the
location of the iconic McEwan Hall where the plenaries will
be held:

https://www.uoecollection.com/
conferences-events/venue-hubs/old-town-campus,

https://www.uoecollection.com/
conferences-events/venue-hubs/old-town-campus/
mcewan-hall

The campus is easily accessible by foot from Waverley
Train Station and it is equally easy to move by foot be-
tween all the spaces used by the conference. It is also close
to most of the attractions Edinburgh has to offer and to large
green spaces such as Holyrood Park (Arthur’s Seat) and the
Meadows. We are getting close to 1,500 talks!

Acknowledgements.

Our group remains committed to delivering high-quality
core activities: the triennial conference, our prizes, the
newsletter, and the STAM Journal on Optimization. During
this period, we ensured that the SIAG website and newsletter
remained up to date, serving as key channels for communi-
cation and engagement within our community.

I would like to thank my fellow officers, Coralia Cartis (Vice
Chair), Gabriele Eichfelder (Program Director), and Ju-
liane Mueller (Secretary) for their strong commitment and
engagement—it was a great pleasure working with you! I
also extend my gratitude to Miguel Anjos, Gabriele Eich-
felder, and Lars Schewe for their outstanding work in lead-
ing the 2026 STAM Conference on Optimization, as well as
to all committee and local organizing committee members
and mini-symposia organizers for their dedicated efforts.

Finally, we wish the new elected officers of the STAG on Op-
timization a successful 2026-2028 term!

Luis Nunes Vicente (Chair, STAG on Optimization)
Timothy J. Wilmott Endowed Chair Professor and Depart-
ment Chair

Department of Industrial and Systems Engineering, Lehigh
University
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Comments from the Editors

Happy 2026, STAG on Optimization! We are pleased to
present this issue of Views and News. In this issue, we spot-
light Jelena Diakonikolas, who comments on the role that
open questions play in optimization research. While this
article is intended to encourage discussion among all practi-
tioners of optimization, Jelena leads with examples of open
questions motivated by her own research, highlighting glaring
gaps in knowledge in 1) the oracle complexity of algorithms
for nonsmooth optimization, 2) the convergence properties
of cyclic coordinate descent, 3) the oracle complexity of a
family of problems subsuming min-max optimization, root-
finding and fixed-point equations and 4) the connection be-
tween solvability of nonconvex problems in machine learning
and the satisfaction of local error bounds.

We are excited for the 2026 STAM Conference on Opti-
mization, to be held June 2-5 in Edinburgh, and we look
forward to seeing many members there.

All issues of Views and News are available online at https:
//siagoptimization.github.io/ViewsAndNews.

The SIAG on Optimization Views and News mailing list,
where editors can be reached for feedback, is siagoptnews®@
lists.mcs.anl.gov. Suggestions for new issues, comments,
and papers are always welcome.

Pietro Belotti

DEIB, Politecnico di Milano

Email: pietro.belotti@polimi.it
Web: https://belotti.faculty.polimi.it

Dmitriy Drusvyatskiy

Mathematics Department, University of Washington
Email: ddrusv@uw.edu

Web: https://sites.math.washington.edu/~ddrusv

Matt Menickelly

Argonne National Laboratory

Email: mmenickelly@anl.gov

Web: https://www.mcs.anl.gov/~menickmj
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