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Generating valid inequalities for a non-convex set S is a highly

challenging and important task in optimization. Recently, many

articles have tackled this endeavor by exploiting the flexibility of

the intersection cut framework. Through intersection cuts, one

can transform the generation of a cutting plane into the con-

struction of an S-free set, that is, a convex set whose interior

does not intersect S. In this article, we summarize recent efforts

in S-free set construction tailored to the case where S is defined

using a non-convex quadratic inequality. We show the basic con-

structions behind these sets, computational experiments, recent

characterizations and extensions, and current challenges. This

article describes joint work with Antonia Chmiela, Joseph Paat,

and Felipe Serrano.

1 Introduction
In the last few decades, we have seen a consistent increase
in the development of new methodologies for non-convex op-
timization that can solve challenging and important models
in science and engineering. One sign of this has been the
growth in software that can solve non-convex optimization
models to global optimality (e.g., [17, 6, 10, 22, 23, 28, 32]).
Most of the current optimization methodologies that can

solve non-convex problems to global optimality are based,
at a high level, on the framework that has proved suc-
cessful in integer linear programming: in particular outer-
approximation techniques that can provide strong dual
bounds, heuristics that can find good feasible solutions, and
branching. While we have made significant progress, we still
encounter multiple challenges that prevent us from solving
many non-convex optimization instances to provable opti-
mality. For an overview of the field, we refer the reader to
[1, 24, 35, 37].
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In this article, we review one stream of work that
has focused on producing convexification techniques for
non-convex quadratically constrained optimization. This
convexification is achieved via cutting planes, i.e., valid
inequalities that can progressively improve a starting
outer-approximation of the feasible region. How to generate
cutting planes is usually a challenging question; here, we
make use of the flexibility of the intersection cut framework.
This overview covers the articles [14, 13, 29, 30].

Before diving into the details of this line of work, we note
that there have been several articles using the intersection
cut framework in non-linear, non-convex settings. For ex-
ample, this framework has been applied to bilevel optimiza-
tion [18], polynomial optimization [8, 9], factorable mixed-
integer non-linear programs (MINLPs) [34], problems with
bilinear terms [19], signomial programming [38], and sub-
modular maximization [39]. Alternative approaches to gen-
erate valid inequalities in the quadratic setting can be seen
in [12, 25, 33]. We refer to the survey [11] and the references
therein for other efforts of extending cutting planes to the
non-linear setting.

1.1 Intersection cuts in a nutshell

Consider a generic optimization problem

min{c̄⊤s : s ∈ S ⊆ Rp} (1)

where S is a closed set, not necessarily convex. Given a lin-
ear outer-approximation of S, the intersection cut paradigm
proceeds as follows. We first solve a linear programming (LP)
relaxation of (1) and obtain a vertex solution s̄. If we are
lucky and s̄ ∈ S, the problem is solved. If not, we construct a
simplicial conic relaxation K ⊇ S with apex s̄ and an S-free
set C such that s̄ ∈ int(C). We define an S-free set as a full-
dimensional closed convex set satisfying int(C)∩S = ∅. With
these ingredients, we can find a cutting plane that separates
s̄ from S. In Figure 1(left) we show a simple intersection
cut in the case where all p rays of K intersect the bound-
ary of the S-free set C. In such a case, the intersection cut
is simply defined by the hyperplane containing all such in-
tersection points (hence its name). For more details on the
intersection cut framework, see [3, 21, 36].

Constructing a simplicial conic relaxation K is easy, pro-
vided we already have a linear relaxation of (1): one can
simply take p linearly independent constraints that are ac-
tive for s̄ from the simplex tableau. Constructing the S-free
set C, however, can be challenging. This is one of the cru-
cial aspects of the intersection cut framework; it channels
the cutting plane generation in a very generic setting into
the construction of an S-free set and the computation of the
intersection points.

It can be proved that if two S-free sets C,C ′ are such
that C ⊆ C ′, the intersection cut derived from C ′ is at
least as strong than the one derived from C [16, Remark
6.6]1. This behavior is shown in Figure 1(right). This makes

1This citation deals with S being the lattice, but the argument ex-
tends trivially to any closed S.
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Figure 1: Left: an intersection cut (red) separating s̄ from S
(gray). The cut is computed using the intersection points of an
S-free set C (blue) and the rays of a simplicial cone K ⊇ S
(boundary in orange) with apex s̄ ̸∈ S. Right: the effect of using
another S-free set C′ ⊋ C. The resulting intersection cut is shown
in black. Figure obtained from [14].

inclusion-wise maximality of an S-free set a desirable goal
to obtain strong cuts.

Once an S-free set C is constructed, the cut can be com-
puted as follows. It is well known that we can assume C
is described as C = {s ∈ Rp : ϕ(s − s̄) ≤ 1} where ϕ is
a sublinear function (e.g. ϕ can be chosen as the gauge of
C− s̄ [31]). Further assuming without loss of generality that
the LP relaxation of (1) is in standard form, we can consider
the constraint s̄ +

∑p
i=1 r

isi ∈ S where ri ∈ Rp are the ex-
treme rays of K and si ∈ R+. Under these considerations,
the intersection cut separating s̄ can be described as

p∑
i=1

ϕ(ri)si ≥ 1. (2)

A common interpretation of ϕ(ri) is via step lengths: when
ϕ is the gauge of C − s̄, we have

ϕ(r) = inf
{
τ : s̄+

r

τ
∈ C, τ > 0

}
.

In this case, 1/ϕ(r) is the step length required to leave C from
s̄ in the direction r. This means that each vector s̄+ri/ϕ(ri)
is on the boundary of C and defines one of the intersection
points we mentioned earlier (and depicted in Figure 1). In
general, it is useful to keep this interpretation in mind; how-
ever, in a later section we will leverage other ϕ functions that
do not correspond to the gauge.

1.2 Maximal quadratic-free sets

The stream of work we overview here deals with problems
that are quadratically constrained. That is, we assume S in
(1) has the form

S = {s ∈ Rp : s⊤Qis+ b⊤i s+ ci ≤ 0, i = 1, . . . ,m}.

where Qi are symmetric matrices that may or may not be
positive semi-definite. Note that if we have s̄ ̸∈ S, there
exists i ∈ {1, . . . ,m} such that

s̄ ̸∈ Si := {s ∈ Rp : s⊤Qis+ b⊤i s+ ci ≤ 0},
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and constructing an Si-free set containing s̄ suffices to ensure
separation. We refer to these Si-free sets as quadratic-free
sets. In what follows, we show how to construct maximal
such sets, computational evaluations and improvements, and
recent characterizations of these sets.

1.3 A canonical representation of a quadratic in-
equality

Slightly abusing notation, we let S refer to a set defined using
a single generic quadratic inequality:

S = {s ∈ Rp : s⊤Qs+ b⊤s+ c ≤ 0}. (3)

We begin by simplifying the description of the quadratic
inequality. Firstly, we note that when Q is positive semidef-
inite or negative semidefinite, the construction of maximal
S-free sets is easy: in the former, they can be obtained from
supporting hyperplanes, and in the latter, the complement
of S is the unique maximal S-free set. Therefore, we focus
on the case where Q is indefinite.
As noted in [30], we can use a linear transformation on S

to shift our attention to one of the following two sets:

Sh := {(x, y) ∈ Rn+m : ∥x∥ ≤ ∥y∥}, (4)

Sg := {(x, y) ∈ Rn+m : ∥x∥ ≤ ∥y∥, a⊤x+ d⊤y = −1}, (5)

where ∥ · ∥ is the Euclidean norm and max{∥a∥, ∥d∥} = 1.
The linear transformation is a composition of a homoge-
nization (if needed), a diagonalization, and a projection.
Whether S gets mapped to Sh or Sg depends on whether the
quadratic defining S is homogeneous, i.e., if b = 0 and c = 0
in (3), then S is mapped to Sh, otherwise, S is mapped to Sg.

Using this representation, one can derive an easy Sh-free
set: by the Cauchy-Schwarz inequality, for any λ ∈ Rn such
that ∥λ∥ = 1, we have

Sh ⊆ {(x, y) : λ⊤x ≤ ∥y∥}.

Therefore,

Cλ := {(x, y) ∈ Rn+m : ∥y∥ ≤ λ⊤x} (6)

is an Sh-free set. We will see below that this set is maxi-
mal, but first, we need to establish a maximality criterion on
which to rely.

2 Maximality criteria
In this section, we show the main maximality criteria we have
developed. We note that these criteria do not assume that
S is a quadratically-defined set; they apply in general.
To motivate our first maximality criterion, let us consider

the case when S is a lattice. In this case, Lovász [26] shows
that full-dimensional maximal S-free sets are polyhedra with
integer points in the relative interior of each facet; see also [2].
We show such a set in Figure 2. In this case, each lattice
point in the relative interior of a facet acts as a “certificate”
for that facet. Note that being in the interior of a facet means
that no other inequality is active at that point. To move to
a general S, we rely on this last interpretation.

Figure 2: Example of a maximal lattice-free set. The set is
lattice-free since there is no integer point in its interior. Further-
more, it is maximal since each facet has at least one integer point
in its relative interior.
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Figure 3: Example of maximality criterion using exposing
points. The set S (orange) is reverse-convex, and each purple line
defines one valid inequality for the S-free set C (green). There
are infinitely many of them. Each point x ∈ S ∩C is an exposing
point for the inequality defined by the purple line passing through
x.

Definition 1 (Exposing point, [30]). Given a convex set
C ⊆ Rn and a valid inequality α⊤x ≤ β, we say that a point
x0 ∈ Rn exposes α⊤x ≤ β provided both 1) α⊤x0 = β and
2) if γ⊤x ≤ δ is any other non-trivial valid inequality for
C such that γ⊤x0 = δ, then γ⊤x ≤ δ is a scaled version of
α⊤x ≤ β. We also say that α⊤x ≤ β is exposed by x0 or
that x0 is an exposing point of the inequality.

The term “exposing” comes from the concept of exposed
points from convex analysis. If C is convex with 0 in its
interior and the valid inequality α⊤x ≤ 1 has an exposing
point, then α is an exposed point of the polar of C.
When every inequality in a description of C has an ex-

posing point, the same phenomenon as in the lattice case is
captured: the exposing points act as a certificate for, loosely
speaking, not being able to “grow the set in that direction”.

Theorem 1 ([30]). Let S ⊆ Rn be a closed set and let C ⊆
Rn be an S-free set. Assume that C = {x ∈ Rn : α⊤x ≤
β,∀(α, β) ∈ I} for some I ⊆ Rn × R such that for every
(α, β) ∈ I there is an x ∈ S ∩ C that exposes α⊤x ≤ β.
Then, C is a maximal S-free set.

For an illustration of this criterion, see Figure 3.

We will see below that this sufficient criterion works as
a good starting point. However, many maximal S-free sets
do not admit exposing points even in the quadratic setting;
this phenomenon does not appear in the lattice case. For
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S

C
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Figure 4: Example of a set S (red), a maximal S-free set C
(orange), and an exposing sequence (xi)∞i=1 (black) for the “hor-
izontal” inequality of C. The exposing sequence is contained in
S, and every sequence of hyperplanes separating xi from C con-
verges to the desired inequality. Figure obtained from [29].

this reason, in [29], a necessary and sufficient criterion was
developed.
Before showing the criterion, let us motivate it with an

example. Consider Figure 4, where a set S and a maximal
S-free set are displayed. In this example, the set C intersects
S in the top corners of the rectangle, where two facets of C
are active. Thus, there are no exposing points. However,
note that the sequence of black points (xi)∞i=1 approaches
the “horizontal facet” of C in a special way: any sequence of
hyperplanes that separate each xi converges to the horizontal
facet. Therefore, this sequence can act as a more flexible
certificate than exposing points. This motivates the following
definition.

Definition 2 (Exposing sequence, [29]). Let C ⊆ Rn be a
convex set and let α⊤x ≤ α0, with α ̸= 0, be a valid inequality
for C. A sequence (xi)∞i=1 in Rn is an exposing sequence
for α⊤x ≤ α0 if limi→∞(δi, δi0) = (α, α0) for every sequence

((δi, δi0))
∞
i=1 in Rn × R such that ∥δi∥ = ∥α∥, δi⊤x ≤ δi0 is a

valid inequality for C, and δi
⊤
xi ≥ δi0 for each i.

We note that when an inequality has an exposing point
x0, the constant sequence xi = x0 for all i is an exposing
sequence.

Theorem 2 ([29]). Let S ⊆ Rn be a closed set and let C ⊆
Rn be an S-free set. C is a maximal S-free set if and only if
there exists a set I ⊆ Rn × R such that

C = {x ∈ Rn : α⊤x ≤ α0 ∀ (α, α0) ∈ I}

and each (α, α0) ∈ I has an exposing sequence (xi)∞i=1 in S.

With the maximality criteria laid out, we can begin to
certify maximality of our quadratic-free sets.

3 The first maximal quadratic-free sets

In (6), we constructed the Sh-free set

Cλ = {(x, y) ∈ Rn+m : ∥y∥ ≤ λ⊤x}.

To prove the maximality of Cλ, we rely on the criterion of
Theorem 1. Note that an outer description of the set Cλ is

Figure 5: Set Sh (orange) and maximal Sh-free set Cλ (green).
On the left, we plot an example with n = 1, m = 2. On the right,
we plot an example with n = 2, m = 1.

Figure 6: Left: the set Sh (orange), a maximal Sh-free set
(green), and the hyperplane H. Right: the same sets displayed
on the slice given by H, i.e., Sh∩H (orange) and Cλ∩H (green).

the following:

Cλ = {(x, y) ∈ Rn+m : β⊤y ≤ λ⊤x, ∀β, ∥β∥ = 1}. (7)

We show that, for each inequality in (7), the point (λ, β)
is an exposing point. Indeed, (λ, β) ∈ Cλ ∩ Sh since ∥λ∥ =
∥β∥ = 1. The inequality β⊤y ≤ λ⊤x is clearly active at
(x, y) = (λ, β). Moreover, for β′ ̸= β we have

(β′)⊤β < 1 = λ⊤λ.

Hence, no other inequality is tight for (λ, β), and thus the
latter is an exposing point. We have proved the following.

Theorem 3 ([30]). The set Cλ is a maximal Sh-free set.

In Figure 5 we display the set Sh and Cλ when n+m ≤ 3.

To move to the non-homogeneous case, one can note that
Sg = Sh ∩ H, where H := {(x, y) ∈ Rn+m : a⊤x + d⊤y =
−1}, and thus, Cλ ∩ H is always Sg-free. This provides a
good starting point, but unfortunately, the maximality of an
S-free set is not maintained when taking slices. We illustrate
this phenomenon in Figure 6.
As can be seen in Figure 6, some inequalities may already

have an exposing point in Sg, which means, intuitively, that
we cannot enlarge the set in that direction. Other inequali-
ties, however, can be tilted and displaced. We show a maxi-
mal Sg-free set in Figure 7, which is obtained from Cλ ∩H
by enlarging it in this way. The formal construction is quite
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Figure 7: The set Sg = Sh ∩H (orange) and a maximal Sg-free
set (purple), obtained from enlarging Cλ ∩H in Figure 6.

technical, so we only show the main results and refer the
reader to [30] for details.
To display the maximal Sg-free sets, we need the following

definition.

Definition 3. Let a ∈ Rn, d ∈ Rm and let λ satisfy ∥λ∥ = 1.
We define the function ϕ : Rm → R as

ϕ(y) =

{
∥y∥, λ⊤a∥y∥+ d⊤y ≤ 0√

(∥y∥2 − (d⊤y)2)(1− (λ⊤a)2)− d⊤yλ⊤a, otherwise.

(8)

Additionally, for technical reasons, we assume we have at
hand (x̄, ȳ) ̸∈ Sg that we would like to cut off, which satisfies

a⊤x̄+ d⊤ȳ = −1.

This is typically available in a cutting-plane framework, since
we can add the last linear equality to the linear relaxation.
The maximal Sg-free sets we construct have (x̄, ȳ) in their
relative interiors.

Theorem 4 ([30]). Consider a non-convex set Sg defined
as in (5), with max{∥a∥, ∥d∥} = 1, and (x̄, ȳ) satisfying both
∥x̄∥ > ∥ȳ∥ and a⊤x̄+ d⊤ȳ = −1. Consider ϕ defined in (8)
and let λ = x̄

∥x̄∥ .

If ∥a∥ ≤ ∥d∥ = 1, the set

Cϕ := {(x, y) ∈ Rn+m : ϕ(y) ≤ λ⊤x} (9)

is maximal Sg-free and contains (x̄, ȳ) in its interior.
If ∥d∥ < ∥a∥ = 1, the set

Cg
ϕ :=

(x, y) :

∥y∥ ≤ λ⊤x, if λ⊤a∥y∥+ d⊤y ≤ 0

ϕ

(
y − d

1− ∥d∥2

)
≤ λ⊤

(
x+

a

1− ∥d∥2

)
, otherwise

 .

is maximal Sg-free and contains (x̄, ȳ) in its interior.

These are rather technical formulas, but we would like to
provide some intuition for the reader. As noted earlier, the
starting point for these sets is Cλ, which can be seen in the
formulas of Cϕ and Cg

ϕ. If we observe Figures 6 and 7, we
note that one of the inequalities of Cλ ∩ H (the inequality
that has an exposing point on the slice) remained untouched
while the other inequality was tilted and displaced. This

is what the condition λ⊤a∥y∥ + d⊤y ≤ 0 in the definition
of ϕ captures. When this condition is met, it indicates
that some of the inequalities of Cλ have exposing points
even after taking slices. The other inequalities need to be
modified, which is what the ϕ function does. One important
point is that the new “horizontal” inequality that was
obtained after tilting and displacing does not intersect the
set Sg, and thus does not have an exposing point. In [30],
we use a special criterion for proving maximality in this
case. This criterion was further refined to obtain Theorem 2.

This provides our first families of maximal quadratic sets
for arbitrary quadratic inequalities. Both in the homoge-
neous and non-homogeneous case, these sets guarantee the
separation of any vertex in an LP relaxation that does not
satisfy a quadratic constraint.

4 Computational implementation

With this theoretical construction established, in [14], we
focused on the implementation details. In particular, we
develop explicit formulas that can be used to compute the
intersection cuts, starting from S as in (3) and s̄ ̸∈ S a vertex
of an LP relaxation. We highlight some of the key features
next and refer the reader to [14] for details.

• We start from a description of S as in (3), s̄ ̸∈ S, and K
a simplicial conic relaxation of the feasible region with
apex s̄.

• We consider an extreme ray r of K and show that
to compute the desired step length—and thus a cut
coefficient—associated with one of the maximal S-free
sets discussed above, it suffices to compute the roots of
one-dimensional quadratics of the form

Art
2 +Brt+ Cr − (Drt+ Er)

2 = 0.

• We provide explicit formulas for Ar, Br, Cr, Dr, Er that
can be directly implemented.

Additionally, we implemented some of the cuts derived
from the outer-product-free sets of [9], which can be derived
from implied constraints using additional variables. If one
uses an extended formulation in QCQPs, a common proce-
dure is to use an extended formulation that defines a matrix
of variables X, where each Xij is meant to represent a term
xixj . Some of the intersection cuts of [9] are derived from
the valid conditions

Xi1,j1Xi2,j2 = Xi1,j2Xi2,j1 . (10)

In [14], we interpret each one of these implied quadratic
equalities as two quadratic inequality constraints and apply
the “maximal quadratic-free machinery” to them.
We tested our cutting planes in SCIP 8.0 [7], using in-

stances of the MINLPLib [27]. We selected all non-convex
instances with at least one quadratic constraint; this resulted
in 705 out of 1625 instances. All experiments were run with
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Figure 8: Gap closed comparison in root node experiments be-
tween intersection cuts and default SCIP. Points that are above
the diagonal are instances where intersection cuts provide better
gaps than default SCIP. Figure obtained from [14].

three different permutations for each instance; in our reports,
we treat every instance-permutation pair as an individual in-
stance.

We begin presenting the evaluation of our cuts using root
node experiments: we start from an initial LP relaxation of a
QCQP (providing a dual bound d1) and incorporate the in-
tersection cuts in SCIP using a separator. After SCIP stops
adding cutting planes, we compute the gap closed ; that is,
if d2 is the dual bound obtained when the algorithm fin-
ishes, and if p is a reference primal bound, then we define
the function GC(p, d1, d2) = (d2 − d1)/(p − d1) as the gap
closed improvement. We used the value of MINLPLib’s best
primal bounds as p and thus discarded instances for which
no primal solution was available, or d1 could not be found.

In Figure 8, we show the effect of adding both intersection
cuts from violated quadratic inequalities in the original
variables (ICUTS) as well as intersection cuts from the
implied quadratic inequalities in (10) (MINOR-B). In these
plots, we see that intersection cuts have a significant impact
in closing the root node gap and thus producing a tight
relaxation before branching.

While these are positive results, in the same article, we
show that directly incorporating these cuts in spatial branch
and bound does not produce positive results. The main rea-
son is that the cuts have a negative impact on SCIP’s pri-
mal heuristics. To isolate this effect, we provide experiments
where we turn off all heuristics and feed SCIP the optimal so-
lution of an instance. These results are summarized in Table
1.

In Table 1 we see that, on average, the intersection
cuts reduce the running time by 1% and the number of
processed nodes by 7%; these improvements are 3% and
12%, respectively, for the affected instances. On the subset
[1000, 3600] containing the hardest instances, we obtain an
improvement of 14% in running time while needing 15%

fewer nodes. This confirms that our cuts are good for
proving optimality, especially in challenging instances. The
natural next step would be to modify how SCIP handles
them within the heuristics. We discuss this challenge in
Section 7.

We note that since version 8.0, these cuts have been
available in SCIP. To test them, we refer the interested
reader to the nlhdlr/quadratic/ family of parameters in
scipopt.org/doc/html/PARAMETERS.php.

5 Monoidal strengthening

One of the natural follow-up questions to [14] was whether
one could exploit the integrality of some of the variables in a
mixed-integer quadratically-constrained program (MIQCP)
to strengthen the intersections cuts since, so far, our cutting
planes have been oblivious to this.
In [13], we incorporated such a strengthening procedure

to the intersection cuts derived from maximal quadratic-free
sets. We achieved this via monoidal strengthening [4]. As
in the previous section, we limit ourselves to a high-level
description of these topics.

Consider the basic intersection cut (2) with C described
as C = {s ∈ Rp : ϕ(s − s̄) ≤ 1}. Monoidal strengthen-
ing exploits the fact that some of the si may be integer
in (2). The main idea is to, again, consider the condition
s̄ +

∑p
i=1 r

isi ∈ S and modify it in the following way. As-
sume that all si are integer to simplify notation. This im-
plies that s̄+

∑p
i=1(r

i+mi)si ∈ S+
∑p

i=1misi for any mi ∈
Rp, i = 1, . . . , p. The set of points of the form

∑p
i=1misi

form a monoid M = {m : m =
∑p

i=1misi, si ∈ Z+}, that
is, M satisfies 0 ∈ M and M +M = M . Thus, we obtain
a new relation: f +

∑p
i=1(r

i +mi)si ∈ S +M . If C is not
only S-free, but also (S+M)-free, then we can use the func-
tion ϕ on this new relation to generate a new cut. This is
summarized in the following result.

Theorem 5 ([4], Theorem 1). Let M be a monoid such that
C is (S +M)-free and let I = {i ∈ [p] : si ∈ Z} be the index
set of the integer variables. Then,∑

i/∈I

ϕ(ri)si +
∑
i∈I

inf
m∈M

ϕ(ri +m)si ≥ 1

is valid and dominates the intersection cut.

The critical point is to find a monoid M such that C
stays (S +M)-free. Equivalently, we can also find a monoid
M such that (the possibly non-convex) C −M is S-free2.

In [13], one of the key contributions is the construction of
M when S and C satisfy a group of technical assumptions.
The intuition for this construction is the following. Consider
the maximal S-free set C represented in Figure 9a. The
set is maximal because both of its defining inequalities have

2With a slight abuse of notation, we refer to a non-convex set C−M
as S-free whenever the convex set C −m is S-free for every m ∈ M .

https://scipopt.org/doc/html/PARAMETERS.php
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Table 1: Summary of results for branch and bound experiments without primal heuristics (optimal solution given to SCIP). Rows
labeled [t, 3600] consider instances where one of the settings took at least t seconds. Columns labeled relative show the relative
improvement of ICUTS+MINOR-B with respect to DEFAULT. Table obtained from [14].

DEFAULT (no heuristics) ICUTS (no heuristics) relative

subset instances solved time nodes solved time nodes time nodes

clean 2034 1224 80.72 2535 1221 79.84 2363 0.99 0.93

affected 660 651 8.36 886 648 8.11 776 0.97 0.88

[0, 3600] 1233 1224 5.63 356 1221 5.52 327 0.98 0.92

[1, 3600] 591 582 32.05 1710 579 30.73 1499 0.96 0.88

[10, 3600] 378 369 109.42 4633 366 104.25 3839 0.95 0.83

[100, 3600] 193 184 457.15 22448 181 393.28 19188 0.86 0.86

[1000, 3600] 69 60 1528.06 110845 60 1310.26 94217 0.86 0.85

(a) S (blue) with maximal S-free set C (orange). In this case the
two inequalities defining C intersect S.

(b) Set of points not in S and “to the left of the exposing points”
(green). Note that the green region is not contained in the orange
region: see the top left and bottom left.

Figure 9: Construction of the monoid for a maximal S-free set. Figure obtained from [13].

exposing points (Definition 1); the two exposing points of C
are the points of the facets of C that are tangent to S.
The monoid M should satisfy that C −M is S-free, and

the set C − M is the union of the displacements of C by
the elements of −M . With this interpretation in mind, we
note that a way of translating C in Figure 9a such that
the translation is S-free is moving the apex of C to a point
not in S and to the left of the exposing points (see Figure
9b). This is the basic idea behind our monoid construction.
In [13], we provide the formal definition of the points that
are “to the left of the exposing points”, and thus define the
monoid M explicitly. We also provide proofs that the set is
indeed a monoid and that C −M is S-free.

In addition to finding the monoid M , there are two other
important questions tackled in [13]. The first question is:
how does one find the coefficients of the strengthened in-
equality defined in Theorem 5? This boils down to solving,
for a given ray r, the optimization problem

ψM (r) := inf
m∈M

ϕ(r +m). (11)

This expression evidently depends on the choice of ϕ, which
is a sublinear function that describes the set C = {s ∈ Rp :
ϕ(s−s̄) ≤ 1}. We have mentioned that one can use the gauge

function, but there is flexibility in the choice of ϕ function.
One strong alternative is using the minimal representation of
C−s̄, that is, the pointwise minimal function ϕ that describes
the set as above (see e.g. [5, 15, 40]). However, ψM (r) may
not be easily computable in this case. In our setting, we
provide the minimal representation ϕ of the maximal S-free
set we consider and also show how to compute ψM (r) (and
thus the strengthened coefficients) using this description.

The second question we tackled is related to the unique-
ness of lifting procedures. The ψM function in (11) provides
one way of improving cut coefficients, but there could be
other options. In our setting, and leveraging the minimal
description ϕ, we show that this lifting is unique, which
means that ψM gives, in a sense, the best possible coeffi-
cients for the integer variables in the intersection cut.

Computationally, we evaluated the advantage of applying
monoidal strengthening versus using the basic intersection
cuts in branch and bound. We embedded the computation
of the monoidal strengthening cut coefficients in SCIP 8.0 as
a subroutine of the already implemented intersection cut gen-
erator. The test set we considered consists of MINLPLib [27]
and QPLib [20]. We selected all non-convex instances with
(mixed)-integer constraints and at least one quadratic con-
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straint satisfying the assumptions of the paper; this leaves us
with 95 instances. Furthermore, we filtered out all instances
that are either infeasible, where no dual bound was found
or where monoidal strengthening could not be applied. This
left us with a heterogeneous test set of 63 instances, and each
instance was run with three different permutations for each
instance. As before, we treated every instance-permutation
pair as an individual instance.
We considered two different settings that are both based

on SCIP’s default settings: icuts generates the original in-
tersection cuts, whereas monoidal uses the strengthened
cutting planes when possible. We restricted icuts and
monoidal to add at most 20 intersection cuts per quadratic
constraint in total.
Summarized results can be found in Table 2. In this table,

we observe that monoidal consistently outperforms icuts
with respect to solving time as well as the number of nodes
needed. For example, when looking at the hardest instances
(labeled [1000, 7200]), monoidal uses 49% less time and
51% fewer nodes than icuts. These results show that the
proposed monoidal strengthening procedure significantly im-
proves the standard intersection cuts, which highlights the
importance of exploiting integrality whenever possible.
However, an important caveat repeats itself in these

experiments: our cuts are currently not able to improve the
overall performance of default SCIP. As mentioned earlier,
our cuts help to obtain better dual bounds but negatively
affect SCIP’s primal heuristics. Another caveat in this
case is that our technical assumptions limit the number of
instances where we can apply our strengthening.

At the time of the writing of this article, the latest
version of SCIP [10] incorporates the monoidal strength-
ening procedure for the intersection cuts we described
here. To use this procedure, we refer the interested
reader to the nlhdlr/quadratic/ family of parameters in
scipopt.org/doc/html/PARAMETERS.php.

6 Every maximal homogeneous-quadratic-
free set

The last work that we discuss is related to the task of
finding all maximal quadratic-free sets. While we have seen
that the basic quadratic-free sets we constructed can take us
a long way in finding good dual certificates, we believe that
finding a complete description of all of them can provide
more options when finding cutting planes, which may yield
a more successful embedding of the cuts in branch and
bound. The first step in this direction was taken in [29],
where a description of all maximal quadratic-free sets for
homogeneous quadratics was found.

As mentioned in the introduction, a homogeneous
quadratic inequality can be transformed into the canonical
form Sh = {(x, y) ∈ Rn+m : ∥x∥ ≤ ∥y∥}. For this
set, we previously constructed the maximal Sh-free set
Cλ = {(x, y) ∈ Rn+m : ∥y∥ ≤ λ⊤x}. In what follows, we
will see that the role of λ can be much more flexible.

Note that we can write Sh as a union of convex sets,

Sh =
⋃

β∈Dm

{(x, y) ∈ Rn+m : ∥x∥ ≤ β⊤y}︸ ︷︷ ︸
Sβ

,

where Dm is the unit sphere in Rm. Therefore, there should
be a separating hyperplane between each Sβ and a Sh-free
set C. Since Sβ is a cone, we can assume that this separating
hyperplane has the form Γ(β)⊤x ≥ β⊤y for some coefficients
Γ(β). Note that Γ induces a function that, for each β, pro-
vides some of the coefficients of the separating hyperplane
for Sβ .
It turns out that we can restrict Γ to take values in the

unit sphere. More formally, given Γ : Dm → Dn, we define
the set

CΓ := {(x, y) ∈ Rn+m : Γ(β)⊤x− β⊤y ≥ 0 ∀ β ∈ Dm}.
(12)

It is not hard to check that the set CΓ is Sh-free. Indeed,
by the Cauchy-Schwarz inequality, any (x, y) in the interior
of CΓ satisfies β⊤y < ∥x∥ for all β ∈ Dm which implies that
∥y∥ < ∥x∥.
Moreover, every full-dimensional maximal Sh-free set can

be written in the ‘standard form’ (12).

Theorem 6 ([29]). Let C be a full-dimensional closed convex
maximal Sh-free set. There exists a function Γ : Dm → Dn

such that C = CΓ.

In light of Theorem 6, the question of characterizing full-
dimensional maximal Sh-free sets can be reduced to charac-
terizing the functions Γ corresponding to maximal CΓ. Let
us deduce a sufficient condition for CΓ to be maximal in a
simple case, that is, the case where every inequality has an
exposing point. Fix β′. The point (x′, y′) = (Γ(β′), β′) sat-
isfies

Γ(β′)⊤x′ − (β′)⊤y′ = 0.

Moreover, (x′, y′) is not tight for the other inequalities if

Γ(β)⊤Γ(β′)− β⊤β′ > 0 ∀β ̸= β′.

Rearranging terms, and using that both β and Γ(β) have
unit norm, this can be rewritten as

∥Γ(β)− Γ(β′)∥ < ∥β − β′∥. (13)

Therefore, we have proved that if Γ satisfies (13) for every
pair β ̸= β′, then CΓ defines a maximal Sh-free set. The set
Cλ defined in (6) is a special case of CΓ: if Γ(β) = λ for all
β, then CΓ = Cλ. However, CΓ has flexibility in what Γ can
be, which gives us significant freedom in the construction of
maximal Sh-free sets beyond Cλ.

As another example, consider n = m = 2 and define Γ
using polar coordinates: for θ ∈ [0, 2π], we define γ(θ) =
θ(2π − θ)/(4π) and define Γ such that

β(θ) := (cos(θ), sin(θ)) 7→ Γ(β(θ)) := (cos(γ(θ)), sin(γ(θ))).

https://scipopt.org/doc/html/PARAMETERS.php
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Table 2: Summary of results for branch-and-bound experiments. Rows labeled [t, 7200] consider instances where one of the settings
took at least t seconds. Columns labeled relative show the relative improvement of monoidal compared to icuts. Table obtained from
[13].

icuts monoidal relative

subset instances solved time nodes solved time nodes time nodes

all 189 113 221.87 4914 115 214.63 4782 0.97 0.97

[0, 7200] 115 113 22.81 936 115 21.56 883 0.95 0.94

[1, 7200] 83 81 67.62 2377 83 62.40 2184 0.92 0.92

[10, 7200] 81 79 72.54 2574 81 66.56 2341 0.92 0.91

[100, 7200] 23 21 724.66 186545 23 565.24 144747 0.78 0.78

[1000, 7200] 10 8 2475.04 631764 10 1252.96 307639 0.51 0.49

Figure 10: 3-dimensional slices of 4-dimensional sets Sh (bound-
ary in orange) and maximal Sh-free set CΓ (red). We note that
slices may not preserve maximality. Figure obtained from [29].

This definition of Γ satisfies (13) (see [29] for these de-
tails), and thus CΓ is maximal. In Figure 10 we show a
3-dimensional slice of this 4-dimensional CΓ.

While (13) expands the maximal Sh-free sets we can build,
it does not paint the full picture. A full characterization
can be obtained by relaxing the strict inequality. We say a
function is non-expansive if

∥Γ(β)− Γ(β′)∥ ≤ ∥β − β′∥ ∀β, β′. (14)

Theorem 7 ([29]). Let Γ : Dm → Dn and define CΓ as in
(12). The set CΓ is a full-dimensional maximal Sh-free set
if and only if Γ is non-expansive and 0 ̸∈ conv({Γ(β) : β ∈
Dm}).

The technical condition 0 ̸∈ conv({Γ(β) : β ∈ Dm}) is
mainly needed to ensure full-dimensionality of the set CΓ,
although its role is slightly more subtle and is used not only
for full-dimensionality. We also remark that this condition is
equivalent to saying that the image of Γ is strictly contained
in a hemisphere.

Let us show a nice example that this theorem allows us to
construct. Suppose n = m and define Γ(β) = |β|, where the

Figure 11: 3-dimensional slice of the 4-dimensional sets Sh

(boundary in orange) and a maximal Sh-free set CΓ (red). Figure
obtained from [29].

absolute value is taken component-wise. The reverse triangle
inequality ||a| − |b|| ≤ |a− b| implies Γ is non-expansive. In
addition, for each β ∈ Dm, the point Γ(β) is non-negative
and strictly positive in at least one component. Hence, 0 ̸∈
conv({Γ(β) : β ∈ Dm}). Theorem 7 then ensures that CΓ

is a full-dimensional maximal Sh-free set.

It can be shown that this set CΓ is polyhedral. In fact,

CΓ ={(x, y) ∈ Rn × Rm : xi ≥ |yi| ∀ i ∈ {1, . . . ,m}}.

Figure 11 illustrates a 3-dimensional slice of the 4-
dimensional sets Sh and CΓ obtained for n = m = 2.

One remarkable feature of this set is that it also remains
maximal on the 3-dimensional slice shown in Figure 11. This
allows us to illustrate the following behavior. It can be seen
that CΓ ∩ Sh = {(x, y) ∈ Rn × Rm : xi = |yi| ∀ i ∈
{1, . . . ,m}}. Therefore, every facet of CΓ intersects Sh and,
more importantly, any (x, y) ∈ CΓ∩Sh is contained in m dif-
ferent facets of CΓ. Consequently, there is no exposing point
in CΓ∩Sh for any of the facets of CΓ. This can be observed in
the slice as well: no relative interior of a facet intersects Sh.
For this reason, maximality in this case cannot be proven
using Theorem 1. In this case, we need exposing sequences
and Theorem 2. This is the core of the proof of Theorem 7.
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Figure 12: Illustration of how an exposing sequence would cer-
tify maximality in the example of Figure 11.

In Figure 12, we illustrate how an exposing sequence would
look in this case.

7 Limitations, open questions, and future
work

To conclude, we summarize current and future research op-
portunities of this line of work.
First, we would like to incorporate these cutting planes

successfully in a branch and bound method. As mentioned
in the computational results, one of the main issues is that
our cutting planes negatively affect SCIP’s heuristics. We
would like to modify how SCIP handles these cuts, so we
can get the best of both worlds: better dual bounds without
negatively affecting the primal heuristics.
Related to the previous point is the computational incor-

poration of new families of cutting planes based on the sets
CΓ. The new characterization of maximal Sh-free sets opens
the door to a plethora of new cuts, some of which could
be either stronger or simply better suited for branch-and-
bound. It is unclear at the moment which Γ functions would
be preferable from a computational standpoint, and if per-
haps the conic relaxation used in the intersection cut com-
putation could guide the construction of the Γ function.
Finally, we are greatly interested in producing more max-

imal quadratic-free sets for the non-homogeneous setting.
Ideally, we would like a characterization akin to that of The-
orem 7 for a non-homogenous quadratic inequality. This
seems like a challenging task.
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[36] Hoàng Tu.y. “Concave programming with linear con-
straints”. In: Doklady Akademii Nauk. Vol. 159. Rus-
sian Academy of Sciences. 1964, pp. 32–35.

[37] Stefan Vigerske and Ambros Gleixner. “SCIP: Global
optimization of mixed-integer nonlinear programs in a
branch-and-cut framework”. In: Optimization Methods
and Software 33.3 (2018), pp. 563–593. doi: 10.1080/
10556788.2017.1335312.

[38] Liding Xu, Claudia D’Ambrosio, Leo Liberti, and So-
nia Haddad-Vanier. “Cutting planes for signomial pro-
gramming”. In: SIAM Journal on Optimization 35.2
(2025), pp. 899–926. doi: 10.1137/23M1599537.

[39] Liding Xu and Leo Liberti. “Submodular maximiza-
tion and its generalization through an intersection cut
lens”. In:Mathematical Programming (2024), pp. 1–37.
doi: 10.1007/s10107-024-02059-2.

[40] Alberto Zaffaroni. “Convex Radiant Costarshaped Sets
and the Least Sublinear Gauge”. In: Journal of Convex
Analysis 20.2 (2013), pp. 307–328.

https://doi.org/10.1007/s10107-022-01808-5
https://doi.org/10.1007/s10107-022-01808-5
https://doi.org/10.1287/moor.2014.0670
https://doi.org/10.1007/978-3-319-11008-0
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://doi.org/10.1007/978-3-319-33461-5_7
https://doi.org/10.1016/j.ejor.2019.09.043
https://doi.org/10.1007/s12532-018-0147-4
https://doi.org/10.1287/opre.21.1.123
https://doi.org/10.1287/opre.21.1.123
https://doi.org/10.1007/s10898-022-01229-w
https://doi.org/10.1007/s10898-022-01229-w
https://www.gurobi.com
https://doi.org/10.1007/978-3-662-03199-5
https://doi.org/10.1287/moor.2015.0737
https://doi.org/10.1287/moor.2015.0737
http://www.minlplib.org/
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1007/s10107-024-02092-1
https://doi.org/10.1007/s10107-021-01738-8
https://doi.org/10.1007/s10107-021-01738-8
https://doi.org/10.1007/BF00138693
https://doi.org/10.1007/BF00138693
https://doi.org/10.1137/19M1277333
https://doi.org/10.1007/978-3-030-17953-3_29
https://doi.org/10.1007/978-1-4757-3532-1
https://doi.org/10.1007/978-1-4757-3532-1
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1137/23M1599537
https://doi.org/10.1007/s10107-024-02059-2


12 SIAG on Optimization Views and News

Bulletin

Email items to siagoptnews@lists.mcs.anl.gov for consider-
ation in the bulletin of forthcoming issues.

Event Announcements

MOPTA 2025
17-20 June 2025
Ponta Delgada, Açores, Portugal

The Modeling and Optimization: Theory and Applications
(MOPTA) conference series gathers experts in discrete and
continuous optimization. MOPTA, founded by Tamás Ter-
laky 25 years ago, is the flagship conference of the Industrial
and Systems Engineering (ISE) department of Lehigh Uni-
versity. It consists of invited talks and contributed talks
across three days.
The 2025 edition of MOPTA will take place in Ponta Del-

gada, Açores, Portugal on 17-20 June 2025, and will also host
the AIMMS/MOPTA Competition. This year’s MOPTA
will also celebrate the 70th birthday of Professor Terlaky.
URL: https://coral.ise.lehigh.edu/mopta2025

EURO 2025
22-25 June 2025
University of Leeds, UK

EURO 2025 is part of a series of conferences that are the
major EURO events. Plenary, semi-plenary, tutorials, and
panel sessions will be given by international speakers. This
year, the EURO conference will take place at the University
of Leeds, UK.
Additionally, the EURO conference will host the award-

ing conference for EURO prizes: the EURO Distinguished
Service Award; the EURO Gold Medal, accompanied by a
lecture of the Gold Medal laureate; the EURO Excellence
in Practice Award; the EURO Doctoral Dissertation Award;
the EURO Prize for OR for the Common Good; and the
EURO Award for the Best EJOR Papers.
URL: https://euro2025leeds.uk

ICCOPT 2025
19-24 July 2025
University of Southern California
Los Angeles, CA

The International Conference on Continuous Optimiza-
tion (ICCOPT) is the flagship conference of the Mathemati-
cal Optimization Society in the area of continuous optimiza-
tion. It is held every three years.
The eighth edition of ICCOPT will take place on the cam-

pus of the University of Southern California, in downtown
Los Angeles, California. The conference, which is scheduled
for July 21-24, 2025, will be preceded by a Summer School
on July 19 and 20. The conference will have plenary and
semi-plenary talks as well as and parallel sessions with inter-
national participants.
URL: https://sites.google.com/view/iccopt2025

siagoptnews@lists.mcs.anl.gov
https://coral.ise.lehigh.edu/mopta2025
https://euro2025leeds.uk
https://sites.google.com/view/iccopt2025
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Books

A First Course in Linear Optimiza-
tion
by Amir Beck and Nili Guttmann-Beck
Publisher: SIAM

ISBN: 978-1-61197-829-2

Published: 2025

Series: Computational Science and Engineering

About the book: This self-contained textbook provides
the foundations of linear optimization, covering topics in
both continuous and discrete linear optimization. It grad-
ually builds the connection between theory, algorithms, and
applications so that readers gain a theoretical and algorith-
mic foundation, familiarity with a variety of applications,
and the ability to apply the theory and algorithms to actual
problems.

Audience: This book is for a first undergraduate course in
linear optimization, such as linear programming, linear opti-
mization, and operations research. It is appropriate for stu-
dents in operations research, mathematics, economics, and
industrial engineering, as well as those studying computer
science and engineering disciplines.

Computational Methods in Optimal
Control: Theory and Practice
by William W. Hager
Publisher: SIAM

ISBN: 978-1-61197-825-4

Published: 2025

Series: CBMS-NSF Regional Conference Series

in Applied Mathematics

About the book: Using material from many different
sources in a systematic and unified way, this self-contained
book provides both rigorous mathematical theory and prac-
tical numerical insights while developing a framework for de-
termining the convergence rate of discretizations to optimal
control problems. Elements of the framework include the
reference point, the truncation error, and a stability theory
for the linearized first-order optimality conditions.

Within this framework, the discretized control problem
has a stationary point whose distance to the reference point
is bounded in terms of the truncation error. The theory
applies to a broad range of discretizations and provides com-
pletely new insights into the convergence theory for discrete
approximations in optimal control, including the relationship
between orthogonal collocation and Runge-Kutta methods.

Throughout the book, derivatives associated with the dis-
cretized control problem are expressed in terms of a back-
propagated costate. In particular, the objective derivative of
a bang-bang or singular control problem with respect to a
switch point of the control are obtained, which leads to the

efficient solution of a class of nonsmooth control problems
using a gradient-based optimizer.

Audience: Computational Methods in Optimal Control:
Theory and Practice is intended for numerical analysts and
computational scientists. Users of the software package
GPOPS may find the book useful since the theoretical basis
for the GPOPS algorithm is developed within the book. It
is appropriate for courses in variational analysis, numerical
optimization, and the calculus of variations.
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Chair’s Column

It is with great pleasure that I reconnect with you through
this column, since my first SIAG on Optimization Views and
News chair’s message in 2023. Serving as the chair of such
an outstanding community is a tremendous honor, and I
am continually inspired by the vibrant energy, dedication,
and talent of our members. The SIAM Activity Group on
Optimization plays a pivotal role in advancing optimization
across diverse domains, fostering groundbreaking research,
driving innovation in education, and enabling impactful ap-
plications in industry and society. Together, we are shaping
the future of optimization, and I am excited to share updates
and celebrate our collective achievements in this issue.

And what great news I have to share! I am delighted to
announce that the 2026 SIAM Conference on Optimization
will take place at the University of Edinburgh, from July
2-5, 2026. Our premier event will feature an exceptional
lineup of invited plenary speakers, who will share their in-
sights on cutting-edge developments in optimization. We are
also excited to offer two minitutorials designed to introduce
foundational and emerging themes to a broad audience. The
conference will explore a rich spectrum of topics, ranging
from foundational themes to application themes that address
pressing challenges. I extend my deepest gratitude to the
conference co-chairs, Miguel Anjos and Gabriele Eichfelder,
and the members of the organizing committee (program com-
mittee in SIAM’s terminology) for their invaluable sugges-
tions and advice in shaping this event. A special thanks also
goes to the local organizing committee, and its co-chairs Lars
Schewe and Miguel Anjos, whose efforts will certainly ensure
a seamless experience for all attendees. Finally, I would like
to express my heartfelt appreciation to all plenary speakers
and minitutorial instructors for their future contributions,
which will be central to making this conference a resound-
ing success. Please stay tuned, as announcements regarding
minisymposia organization and abstract submission will be
made soon.

I wish you all an optimal 2025! Luis

Luis Nunes Vicente (Chair, SIAG on Optimization)
Timothy J. Wilmott Endowed Chair Professor and Depart-
ment Chair
Department of Industrial and Systems Engineering, Lehigh
University

2026 SIAM Conference on Optimization
June 2-5, 2026
University of Edinburgh, UK
https://www.siam.org/conferences-events/siam-
conferences/op26

Invited Plenary Talks:

• Radu Ioan Bot, University of Vienna, Austria

• Andrea Lodi, Cornell Tech University, USA

• Ruth Misener, Imperial College London, UK

• Laura Sanità, Bocconi University, Italy

• Ruoyu Sun, Chinese University of Hong Kong, China

• Stefan M. Wild, Lawrence Berkeley National Labora-
tory, USA

Minitutorials:

• Performance and computer-added analyses of optimiza-
tion methods, François Glineur, UCLouvain, Belgium
Adrien B. Taylor, INRIA, France

• Fair and interpretable resource allocation and machine
learning, Phebe Vayanos, USC, USA

Organizing Committee:

• Miguel Anjos, co-chair, University of Edinburgh, UK

• Gabriele Eichfelder, co-chair, Technische Universität Il-
menau, Germany

• Luis Nunes Vicente, co-chair, Lehigh University, USA

• Heinz Bauschke, University of British Columbia,
Canada

• Ana Luisa Custodio, New University of Lisbon, Portugal

• Santanu Subhas Dey, Georgia Institute of Technology,
USA

• Susan R. Hunter, Purdue University, USA

• Monique Laurent, CWI and Tilburg University, Nether-
lands

• Laura Palagi, Sapienza Università di Roma, Italy

• Andrea Raith, University of Auckland, New Zealand

• Chen Xiaojun, The Hong Kong Polytechnic University,
Hong Kong

• Wotao Yin, Alibaba Group US/DAMO Academy, USA

• Alain B. Zemkoho, University of Southampton, UK

Local Organizing Committee:

• Lars Schewe, co-chair, University of Edinburgh, UK

• Miguel Anjos, co-chair, University of Edinburgh, UK

• Merve Bodur, University of Edinburgh, UK

• Jacek Gondzio, University of Edinburgh, UK

• Andreas Grothey, University of Edinburgh, UK

• Akshay Gupte, University of Edinburgh, UK

http://www.lehigh.edu/lnv
https://www.siam.org/conferences-events/siam-conferences/op26
https://www.siam.org/conferences-events/siam-conferences/op26
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• Sergio Garcia Quiles, University of Edinburgh, UK

• John Pearson, University of Edinburgh, UK

• Audrey Repetti, Heriot-Watt University, UK

• Kit Searle, University of Edinburgh, UK

• Alper E. Yildirim, University of Edinburgh, UK

Foundational Themes:

• Conic and linear optimization

• Derivative-free optimization

• Game theory and equilibrium problems

• Geometric perspectives in optimization

• Graphs and network optimization

• Integer optimization

• Nonlinear optimization

• PDE-constrained optimization

• Polynomial and global optimization

• Stochastic and robust optimization

• Variational inequalities and nonsmooth optimization

Application Themes:

• Optimization in data science

• Optimization in health care

• Optimization in energy

• Optimization in control systems

• Optimization in quantum computing

• Optimization in science and engineering

• Optimization in machine learning/AI

Comments from the Editors

We are pleased to present this issue of Views and News.
This issue has been published later than usual for several
reasons beyond our control, but expect another issue to ap-
pear in 2025. In this issue, we feature an article contributed
by Gonzalo Muñoz on quadratic-free sets. These sets are
of practical interest in solving mixed integer nonlinear opti-
mization problems with nonconvex quadratic constraints.
All issues of Views and News are available online at https:

//siagoptimization.github.io/ViewsAndNews.
May all your algorithms be efficient, and may you always

find certificates of global optimality!

The SIAG on Optimization Views and News mailing list,
where editors can be reached for feedback, is siagoptnews@
lists.mcs.anl.gov. Suggestions for new issues, comments,
and papers are always welcome.

Pietro Belotti
DEIB, Politecnico di Milano
Email: pietro.belotti@polimi.it
Web: https://belotti.faculty.polimi.it

Dmitriy Drusvyatskiy
Mathematics Department, University of Washington
Email: ddrusv@uw.edu
Web: https://sites.math.washington.edu/~ddrusv

Matt Menickelly
Argonne National Laboratory
Email: mmenickelly@anl.gov
Web: https://www.mcs.anl.gov/~menickmj

https://siagoptimization.github.io/ViewsAndNews
https://siagoptimization.github.io/ViewsAndNews
siagoptnews@lists.mcs.anl.gov
siagoptnews@lists.mcs.anl.gov
pietro.belotti@polimi.it
https://belotti.faculty.polimi.it
ddrusv@uw.edu
https://sites.math.washington.edu/~ddrusv
mmenickelly@anl.gov
https://www.mcs.anl.gov/~menickmj
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