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1 Introduction

Linear programming (LP) [26, 17, 15, 51, 50, 33] is a sem-
inal optimization problem that has grown with today’s rich
and diverse optimization modeling and algorithmic land-
scape. LP is used in just about every arena of the global
economy, including transportation, telecommunications, pro-
duction and operations scheduling, as well as in support of
strategic decision-making [24, 19, 14, 30, 13, 53]. Eugene
Lawler is quoted as stating in 1980 that LP “is used to al-
locate resources, plan production, schedule workers, plan in-
vestment portfolios and formulate marketing (and military)
strategies. The versatility and economic impact of linear
optimization models in today’s industrial world is truly awe-
some.”

Since the late 1940s, the exceptional modeling capabilities
of LP have spurred extensive investigations into efficient al-
gorithms for solving LP. Presently, the most widely recog-
nized methods for LP are Dantzig’s simplex method [15, 16]
and interior-point methods [46, 36, 52]. The state-of-the-
art commercial LP solvers, which are based on variants of
these two methods, are quite mature, and can reliably de-
liver extremely accurate solutions. However, it is extremely
challenging to further scale either of these two algorithms
beyond the problem sizes they can currently handle. More
specifically, the computational bottlenecks of both methods
involve matrix factorization to solve linear equations, which
leads to two fundamental challenges as the size of the prob-
lem increases:

• In commercial LP solvers, the simplex method utilizes
LU-factorization and the interior point method utilizes
Cholesky factorization when solving the linear equa-
tions. While the constraint matrix is extremely sparse
in practice, it is often the case that the factorization
is much denser than the constraint matrix. This is the
reason why commercial LP solvers require more memory
than just storing the LP instance itself, and it may lead
to out-of-memory errors when solving large instances.
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Even when it does fit in memory, the factorization may
take a long time for large instances.

• It is highly challenging to take advantage of modern
computing architectures, such as GPUs or distributed
systems, to solve the linear equations in these two meth-
ods. For simplex, multiple cores are generally employed
only in the “pricing” step that selects variables enter-
ing or leaving the basis, and the speedups are generally
minimal after two or three cores [25]. For interior point
methods, commercial solvers can use multiple threads
to factor the associated linear systems, and speedups
are generally negligible after at most six shared-memory
cores, although further scaling is occasionally possible.

Another classic approach to solving large-scale LPs is to use
decomposition algorithms, such as Dantzig-Wolfe decompo-
sition, Benders decomposition, etc. While these algorithms
are useful for solving some problems, they are tied to cer-
tain block structures of the problem instances and suffer
from slow tail convergence, and thus they are not suitable
for general-purpose LP solvers.

Given the above limitations of existing methods, first-order
methods (FOMs) have become increasingly attractive for
large LPs. FOMs only utilize gradient information to update
their iterates, and the computational bottleneck is matrix-
vector multiplication, as opposed to matrix factorization.
Therefore, one only needs to store the LP instance in mem-
ory when using FOMs rather than storing any factorization.
Furthermore, thanks in part to recent developments in ma-
chine learning/deep learning, FOMs scale very well on GPUs
and distributed computing platforms.

Using FOMs for LP is not a new idea. As early as the 1950s,
initial efforts were made to employ FOMs for solving LP
problems. Notably, with the intuition to make big jumps
rather than “crawling along edges”, Brown and Koopmans
[9] discussed steepest ascent to maximize the linear objective
under linear inequality constraints. Zoutendijk [56, 57] pio-
neered the development of feasible direction methods for LP,
where the iterates consistently move along a feasible descent
direction. The subsequent development of steepest descent
gravitational methods in [12] also falls within this category.
Another early approach to first-order methods for solving LP
is the utilization of projected gradient algorithms [48, 28].
All these methods, however, still require solving linear sys-
tems to determine an appropriate direction for advancement.
Solving the linear systems that arise during the update can
be highly challenging for large instances. Moreover, the com-
putation of projections onto polyhedral constraints can be
arduous and even intractable for large-scale instances.

The recent surge of interest in large-scale applications of LP
has prompted the development of new FOM-based LP algo-
rithms, aiming to further scale up/speed up LP. The four
main solvers are:

PDLP [2]. PDLP utilizes a primal-dual hybrid gradi-
ent (PDHG) method as its base algorithm and introduces
practical algorithmic enhancements, such as presolving, pre-
conditioning, adaptive restart, adaptive choice of step size,
and primal weight, on top of PDHG. Right now, it has

three implementations: a prototype implemented in Julia
(FirstOrderLp.jl) for research purposes, a production-level
C++ implementation that is included in Google OR-Tools,
and an internally distributed version at Google. The inter-
nally distributed version of PDLP has been used to solve
real-world problems with as many as 92B non-zeros [34],
which is one of the largest LP instances ever to be solved
by a general-purpose LP solver.

ABIP [29, 20]. ABIP is an alternating direction method
of multipliers (ADMM)-based IPM. The core algorithm of
ABIP is an homogeneous self-dual embedded interior-point
method. Instead of approximately minimizing the log-barrier
penalty function with a Newton’s step, ABIP utilizes multi-
ple steps of ADMM. The O

(
1
ϵ log

(
1
ϵ

))
sublinear complexity

of ABIP was presented in [29]. Recently, Deng et al. [20] in-
cludes new enhancements, i.e., preconditioning, restart and
hybrid parameter tuning on top of ABIP; the enhanced ver-
sion is called ABIP+. ABIP+ is numerically comparable to
the Julia implementation of PDLP. ABIP+ now also sup-
ports a more general conic setting when the proximal prob-
lem associated with the log-barrier in ABIP can be efficiently
computed.

ECLIPSE [6]. ECLIPSE is a distributed LP solver de-
signed specifically for large-scale LPs encountered in web
applications. These LPs have a certain decomposition struc-
ture, and the effective constraints are usually much less than
the number of variables. ECLIPSE looks at a certain dual
formulation of the problem, then utilizes accelerated gradi-
ent descent to solve the dual problem, smoothed via Nesterov
smoothing. This approach is shown to have O( 1ϵ ) complex-
ity, and it is used to solve web applications with 1012 decision
variables [6] and real-world web applications on the LinkedIn
platform [45, 1].

SCS [41, 40]. The splitting conic solver (SCS) tackles the
homogeneous self-dual embedding of general conic program-
ming using ADMM. As a special case of conic programming,
SCS can also be used to solve LP. Each iteration of SCS
involves projecting onto the cone and solving a system of
linear equations with similar forms so that it only needs to
store one factorization in memory. Furthermore, SCS sup-
ports solving the linear equations with an iterative method,
which only uses matrix-vector multiplication.

In the rest of this article, we focus on discussing the theo-
retical and computational results of PDLP to provide a solid
introduction to the field of FOMs for LP. Indeed, many the-
oretical guarantees we mention below can be applied directly
to SCS, since ADMM is a pre-conditioned version of PDHG.
Furthermore, many enhancements proposed in PDLP, such
as preconditioning and restart, have been implemented in
ABIP+.

2 PDHG for LP

For this section, we look at the standard form of LP for the
sake of simplicity, and most of these results can be extended

https://github.com/google-research/FirstOrderLp.jl
https://developers.google.com/optimization
https://github.com/leavesgrp/ABIP
https://github.com/cvxgrp/scs
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to other forms of LP. More formally, we consider

min
x∈Rn

cTx

s.t. Ax = b

x ≥ 0 ,

(1)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The dual of eq. (1) is
given by

max
y∈Rm

bT y

s.t. AT y ≤ c .
(2)

We start by discussing the most natural FOMs to solve LP as
well as their limitations, which then lead to PDHG. Next, we
discuss the convergence guarantees of vanilla PDHG for LP,
and building upon that, we present the restarted PDHG,
which is provably an optimal FOM for solving LP, i.e., it
matches the complexity lower bound. Then, we discuss
how PDHG can detect infeasibility without additional ef-
fort.

2.1 Initial attempts

The most natural FOM for solving a constrained optimiza-
tion problem, such as LP (1), is perhaps the projected gra-
dient descent (PGD), which consists of the iterative up-
date

xk+1 = proj{x∈Rn
+|Ax=b}(x

k − ηc) ,

where η is the step-size of the algorithm. All the nice the-
oretical guarantees of PGD for general constrained convex
optimization problems can be directly applied to LP. Unfor-
tunately, computing the projection onto the constrained set
(i.e., the intersection of an affine subspace and the positive
orthant) involves solving a quadratic programming problem,
which can be as hard as solving the original LP, and thus
PGD is not a practical algorithm for LP. To disentangle
linear constraints and (simple) nonnegativity of variables,
a natural idea is to dualize the linear constraints Ax = b and
consider the primal-dual form of the problem,

min
x≥0

max
y

L(x, y) := cTx− yTAx+ bT y . (3)

Convex duality theory [8] shows that the saddle points to (3)
can recover the optimal solutions to the primal problem (1)
and the dual problem (2). For the primal-dual formulation
of LP (3), the most natural FOM is perhaps the projected
gradient descent-ascent method (GDA), which iteratively up-
dates {

xk+1 = projRn
+
(xk + ηAT yk − ηc)

yk+1 = yk − σAxk + σb ,

where η and σ are the primal and the dual step-size, respec-
tively. The projection of GDA is onto the positive orthant for
the primal variables and it is cheap to implement. Unfortu-
nately, GDA does not converge to a saddle point of (3). For
instance, Figure 1 plots the trajectory of GDA on a simple
primal-dual form of LP

min
x≥0

max
y

(x− 3)y , (4)

where (3, 0) is the unique saddle point. As we can see, the
GDA iterates diverge and spin away from the saddle point.
Thus, GDA is not a good algorithm for solving (3).

Figure 1: Trajectories of GDA, PPM and PDHG to solve a
simple bilinear problem (4) with initial solution (2, 2) and step-
size η = σ = 0.2.

Another candidate algorithm to solve (3) is the proximal
point method (PPM), proposed in the seminal work of Rock-
afellar [47]. PPM consists of the iteration

(xk+1, yk+1)← argminx≥0 maxy
(
L(x, y)

+ 1
2η∥x− xk∥22 − 1

2σ∥y − yk∥22
)
.

(5)

Unlike GDA, PPM exhibits nice theoretical properties for
solving primal-dual problems (see Figure 1 for example).
However, its update rule is implicit and requires solving the
subproblems arising in (5). This drawback makes PPM more
of a conceptual, rather than a practical, algorithm.

To overcome these issues of GDA and PPM, we consider the
primal-dual hybrid gradient (PDHG) method, also known as
the Chambolle-Pock algorithm [10, 54]. PDHG is a first-
order method for convex-concave primal-dual problems orig-
inally motivated by applications in image processing. In the
case of LP, the update rule is straightforward:{

xk+1 ← projRn
+
(xk + ηAT yk − ηc)

yk+1 ← yk − σA(2xk+1 − xk) + σb ,
(6)

where η is the primal step-size and σ is the dual step-size.
Similar to GDA, the algorithm alternates between the primal
and the dual variables; the difference is that in the dual
update, one utilizes the gradient at the extrapolated point
2xk+1 − xk. The extrapolation helps with the convergence
of the algorithm, as we can see in Figure 1. Indeed, one
can show PDHG is a preconditioned version of PPM (see
the next section for more details), and thus enjoys the nice
convergence properties of PPM. However, PDHG does not
require solving the implicit update (5). The computational
bottleneck of PDHG is the matrix-vector multiplication (i.e.,
in AT y and Ax).

2.2 Theory of PDHG on LP

In this section, we start with presenting the sublinear con-
vergence rate for the average iterates and the last iterates
of PDHG. Then we present the sharpness of the primal-dual



4 SIAG on Optimization Views and News

formulation of LP that leads to the linear convergence of
PDHG on LP.

For simplicity of exposition, we assume the primal and dual
step-sizes are equal, i.e., η = σ = s throughout this sec-
tion and the next section. This can be done without loss
of generality by rescaling the primal and the dual variables.
Furthermore, we assume the LP instances are feasible and
bounded in this and the next section, and we will discuss
infeasibility detection later on. For notational simplicity, we
denote z = (x, y) as the pair of the primal and dual solu-
tion,

Ps =

(
1
sI AT

A 1
sI

)
, and ∥z∥Ps =

√
⟨z, Psz⟩.

The Ps norm is the inherent norm for PDHG, and it plays
a critical role in the theoretical analysis of PDHG. One can
clearly see this by noticing that the PDHG update (6) can
be rewritten as

Ps(z
k − zk+1) ∈ F(zk+1) , (7)

where F(z) =
(

∂xL(x, y)
−∂yL(x, y)

)
is the sub-differential of the ob-

jective. This also showcases that PDHG is a pre-conditioned
version of PPM with Ps norm by noticing that one can
rewrite the update rule of PPM as 1

s (z
k − zk+1) ∈ F(zk+1).

Armed with this understanding, one can easily obtain the
sublinear convergence of of PDHG.

Theorem 1 (Average iterate convergence of PDHG [10, 11,
31]). Consider the iterates {zk}∞k=0 of PDHG (6) for solv-

ing (3). Denote z̄k = (x̄k, ȳk) = 1
k

∑k
i=1 z

i as the average
iterates. Then it holds for any 0 < s ≤ 1

∥A∥2
, k ≥ 1, and

z = (x, y) ∈ Z that

L(x̄k, y)− L(x, ȳk) ≤ 1

2k
∥z − z0∥2Ps

.

Theorem 2 (Last iterate convergence of PDHG [32]). Con-
sider the iterates {zk}∞k=0 of PDHG (6) for solving (3). Let
z∗ ∈ Z∗ be an optimal solution to (3). Suppose the step-size
satisfies s < 1

∥A∥ . Then, it holds for any iteration k ≥ 1,

z = (x, y) ∈ Z and any optimal solution z∗ that

L(xk, y)− L(x, yk) ≤ 1√
k

(
∥z0 − z∗∥2Ps

+

∥z0 − z∗∥Ps
∥z∗ − z∥Ps

)
.

Theorem 1 and Theorem 2 show that the average iterates of
PDHG have O(1/k) convergence rate, and the last iterates
of PDHG have O(1/

√
k) convergence rate. The above two

convergence results are not limited to LP and PDHG. [32, 31]
show that these results work for convex-concave primal-dual
problems (i.e., for general L(x, y) as long as L is convex in x
and concave in y) and for more general algorithms as long as
the update rule can be written as an instance of (7), such as
PPM, alternating direction method of multipliers (ADMM),
etc.

Theorem 1 and Theorem 2 also imply that the average iter-
ates of PDHG have a faster convergence rate than the last

iterates. Numerically, one often observes that the last iter-
ates of PDHG exhibit faster convergence (even linear conver-
gence) than the average iterates. This is due to the structure
of LP, which satisfies a certain regularity condition that we
call the sharpness condition. To formally define this condi-
tion, we first introduce a new progress metric, the normalized
duality gap, as defined in [4].

Definition 1 (Normalized duality gap [4]). For a primal-
dual problem (3) and a solution z = (x, y) ∈ Z, the normal-
ized duality gap with radius r is defined as

ρr(z) = max
ẑ∈Wr(z)

L(x, ŷ)− L(x̂, y)

r
, (8)

where Wr(z) = {ẑ ∈ Z | ∥z− ẑ∥2 ≤ r} is a ball centered at z
with radius r intersected with Z = Rn

+ × Rm.

Normalized duality gap is a valid progress measurement for
LP, since ρr(z) is a continuous function and ρr(z) = 0 if and
only if z is an optimal solution to (3). One can show that
LP is indeed a sharp problem: the normalized duality gap
ρr(z) of (3) is sharp in the standard sense.

Proposition 1 ([4]). The primal-dual formulation of linear
programming (3) is α-sharp on the set ∥z∥2 ≤ R for all
r ≤ R, i.e., there exists a constant α > 0 and it holds for
any z with ∥z∥2 ≤ R and any r ≤ R that

αdist(z,Z∗) ≤ ρr(z) ,

where Z∗ is the optimal solution set, dist(z,Z∗) =
minz∗∈Z∗ ∥z − z∗∥ is the distance between z and Z∗.

The next theorem shows that the last iterates of PDHG ex-
hibit global linear convergence on LP (more generally, on
sharp primal-dual problems). In contrast, the average iter-
ates always exhibit sublinear convergence.

Theorem 3 ([32]). Consider the iterates {zk}∞k=0 of PDHG
(6) to solve (3). Suppose the step-size s ≤ 1

2∥A∥ , and (3)

is α-sharp on BR(0), where R is the upper bound of ∥zk∥2.
Then, it holds for any iteration k ≥

⌈
4e/(sα)2

⌉
that

distPs
(zk,Z∗) ≤ exp

(
1

2
− k

2 ⌈4e/(sα)2⌉

)
distPs

(z0,Z∗) .

2.3 Optimal FOM for LP

Theorem 3 shows that the last iterates of PDHG have lin-

ear convergence with complexity O
((

∥A∥2

α

)2
log
(
1
ϵ

))
when

the optimal step-size is chosen. A natural question is whether
there exists FOM with faster convergence for LP. The answer
is yes, and it turns out a simple variant of PDHG achieves
faster (linear) convergence than PDHG matching the com-
plexity lower bound.

Algorithm 1 formally presents this algorithm, which we dub
restarted PDHG. Algorithm 1 is a two-loop algorithm. The
inner loop runs PDHG until one of the restart conditions
holds. At the end of each inner loop, the algorithm restarts
the next outer loop from the running average of the current
epoch.
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Algorithm 1: Restarted PDHG for (3)

Input: Initial point (x0, y0), step-sizes 0 < s < 1
∥A∥2

,

outer loop counter n← 0.
1 repeat
2 initialize the inner loop counter k ← 0;
3 repeat
4 xn,k+1 ← projRn

+
(xn,k + ηAT yn,k − ηc);

5 yn,k+1 ← yn,k − σA(2xn,k+1 − xn,k) + σb;

6 (x̄n,k+1, ȳn,k+1)← 1
k+1

∑k+1
i=1 (x

n,i, yn,i);

7 until restart condition holds;
8 initialize the initial solution

(xn+1,0, yn+1,0)← (x̄n,k+1, ȳn,k+1);
9 n← n+ 1;

10 until (xn+1,0, yn+1,0) convergence;

A crucial component of the algorithm is when to restart.
Suppose we know the sharpness constant α and ∥A∥2. The
fixed frequency restart scheme proposed in [4] is to restart
the algorithm every

k∗ =

⌈
4e∥A∥2

α

⌉
(9)

iterations. The next theorem presents the linear conver-
gence rate of PDHG with this particular fixed frequency
restart.

Theorem 4 ([4]). Consider the iterates {zn,0}∞n=0 generated
by Algorithm 1 for solving (3) with fixed frequency restart;
that is, we restart the outer loop when k exceeds k∗ in (9).
Then for any ϵ > 0, the algorithm finds zn,0 such that
distPs

(zn,0,Z∗) ≤ ϵ within

O
(∥A∥2

α
log

(
1

ϵ

))
PDHG iterations.

Furthermore, [4] shows that restarted PDHG matches the
complexity lower bound of a wide range of FOMs for LP. In
particular, we consider span-respecting FOMs.

Definition 2. An algorithm is span-respecting for an un-
constrained primal-dual problem minx maxy L(x, y) if

xk ∈ x0 + span{∇xL(x
i, yj) : ∀i, j ∈ {1, ..., k − 1}}

yk ∈ y0 + span{∇yL(x
i, yj) : ∀i ∈ {1, ..., k},

∀j ∈ {1, ..., k − 1}} .

Definition 2 is an extension of the span-respecting FOMs
for minimization [38] in the primal-dual setting. Theorem 5
provides a lower complexity bound of span-respecting primal-
dual algorithms for LP.

Theorem 5 (Lower complexity bound [4]). Consider any
iteration k ≥ 0 and parameter value γ > α > 0. There
exists an α-sharp instance of LP with ∥A∥2 = γ such that
the iterates zk of any span-respecting algorithm satisfies

dist(zk,Z∗) ≥
(
1− α

γ

)k

dist(z0,Z∗) .

Together with Theorem 4, Theorem 5 shows that restarted
PDHG is an optimal FOM for LP.

In practice, one generally does not know the sharpness con-
stant α or the smoothness constant γ. Applegate et al.
[4] proposes an adaptive restart scheme, which essentially
restarts the algorithm whenever the normalized duality gap
exhibits a constant factor shrinkage. The adaptive restart
scheme does not require knowing the parameters of the prob-
lem, and it leads to a nearly optimal (up to a log term)
complexity.

2.4 Infeasibility detection

The convergence results of PDHG in the previous section re-
quire the LP to be feasible and bounded. In practice, it is
occasionally the case that an LP is infeasible or unbounded,
thus infeasibility detection is a necessary feature for any LP
solver. In this section, we investigate the behavior of PDHG
on infeasible/unbounded LPs, and claim that the PDHG it-
erates encode infeasibility information automatically.

The easiest way to describe the infeasiblity detection prop-
erty of PDHG is perhaps to look at it from an operator per-
spective. More formally, we use T to represent the operator
for one step of the PDHG iteration, i.e., zk+1 = T (zk) where
T is specified by (6). Next, we introduce the infimal displace-
ment vector of the operator T , which plays a central role in
the infeasibility detection of PDHG.

Definition 3. For the operator T induced by PDHG on (3),
we call

v := arg min
z∈range(T−I)

∥z∥22

its infimal displacement vector (which is uniquely de-
fined [42]).

It turns out that if LP is primal (or dual) infeasible, then the
dual (or primal) variables diverge along a ray with direction
v. Furthermore, the corresponding dual (or primal) part of
v provides an infeasibility certificate for the primal. Table 1
summaries such results. More formally,

Theorem 6 (Behaviors of PDHG for infeasible LP [3]).
Consider the primal problem (1) and dual problem (2). As-
sume s < 1

∥A∥ , let T be the operator induced by PDHG on

(3), and let {zk = (xk, yk)}∞k=0 be a sequence generated by
the fixed-point iteration from an arbitrary starting point z0.
Then, one of the following holds:

(a). If both primal and dual are feasible, then the iterates
(xk, yk) converge to a primal-dual solution z∗ = (x∗, y∗) and
v = (T − I)(z∗) = 0.

(b). If both primal and dual are infeasible, then both pri-
mal and dual iterates diverge to infinity. Moreover, the pri-
mal and dual components of the infimal displacement vector
v = (vx, vy) give certificates of dual and primal infeasibility,
respectively.

(c). If the primal is infeasible and the dual is feasible, then
the dual iterates diverge to infinity, while the primal iterates
converge to a vector x∗. The dual-component vy is a cer-
tificate of primal infeasibility. Furthermore, there exists a
vector y∗ such that v = (T − I)(x∗, y∗).
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(d). If the primal is feasible and the dual is infeasible, then
the same conclusions as in the previous item hold by swap-
ping primal with dual.

Furthermore, one can show that the difference of iterates and
the normalized iterates converge to the infimal displacement
vector v with sublinear rate:

Theorem 7 ([3, 18]). Let T be the operator induced by
PDHG on (3). Then there exists a finite z∗ such that
T (z∗) = z∗ + v and for any such z∗ and all k:

(a) (Difference of iterates)

min
j≤k
∥v − (zj+1 − zj)∥ ≤ 1√

k
∥z0 − z∗∥Ps

,

(b) (Normalized iterates)∥∥∥∥v − 1

k
(zk − z0)

∥∥∥∥
Ps

≤ 2

k
∥z0 − z∗∥Ps

.

Theorem 6 and Theorem 7 show that the difference of iter-
ates and the normalized iterates of PDHG can recover the
infeasibility certificates with sublinear rate. While the nor-
malized iterates have faster sub-linear convergence than the
difference of iterates, one can show that the difference of
iterates converge linearly to the infimal displacement vec-
tor under additional regularity conditions [3]. In practice,
PDLP periodically checks whether the difference of iterates
or the normalized iterates provide an infeasibility certifi-
cate, and the performance of these two sequences is instance-
dependent.

3 PDLP

In the previous section, we presented theoretical results of
PDHG for LP. In the solver PDLP, there are additional
algorithmic enhancements on top of PDHG to boost the
practical performance. In this section, we summarize the
enhancements as well as the numerical performance of the
algorithms. These results were based on the Julia imple-
mentation and were presented in [2]. The algorithm in the
C++ implementation of PDLP is almost identical to the Ju-
lia implementation, with two minor differences: it supports
two-sided constraints, and utilizes Glop presolve instead of
Papilo presolve.

PDLP solves a more general form of LP,

min
x∈Rn

cTx

s.t. Gx ≥ h

Ax = b

l ≤ x ≤ u

(10)

where G ∈ Rm1×n, A ∈ Rm2×n, c ∈ Rn, h ∈ Rm1 , b ∈ Rm2 ,
l ∈ (R∪ {−∞})n, u ∈ (R∪ {∞})n. The primal-dual form of
(10) is

min
x∈X

max
y∈Y

L(x, y) := cTx− yTKx+ qT y (11)

where KT =
(
GT , AT

)
, qT :=

(
hT , bT

)
, X := {x ∈ Rn : l ≤

x ≤ u}, and Y := {y ∈ Rm1+m2 : y1:m1 ≥ 0}. In PDLP, the
primal and the dual are reparameterized as

η = s/ω, σ = sω with s, ω > 0 ,

where s controls the scale of the step-size, and ω (which
we call the primal weight) controls the balance between the
primal and the dual variables.

3.1 Algorithmic enhancements in PDLP

PDLP has essentially five major enhancements on top
of restarted PDHG: presolving, preconditioning, adaptive
restart, adaptive step-size, and primal weight update.

• Presolving. PDLP utilizes PaPILO [22], an open-
sourced library, for the presolving step. The basic idea
of presolving is to simplify the problem by detecting in-
consistent bounds, removing empty rows and columns of
the constraint matrix, removing variables whose lower
and upper bounds are equal, detecting duplicate rows
and tightening bounds, etc.

• Preconditioning. The performance of FOMs heavily
depends on the condition number. PDLP utilizes a diag-
onal preconditioner to improve the condition number of
the problem. More specifically, PDLP rescales the con-
straint matrix K = (G,A) to K̃ = (G̃, Ã) = D1KD2

with positive diagonal matrices D1 and D2, so that
the resulting matrix K̃ is “well balanced”. Such pre-
conditioning creates a new LP instance that replaces
A,G, c, b, h, u and l in (10) with G̃, Ã, x̂ = D−1

2 x, c̃ =
D2c, (b̃, h̃) = D1(b, h), ũ = D−1

2 u and l̃ = D−1
2 l. In the

default PDLP settings, a combination of Ruiz rescal-
ing [49] and the preconditioning technique proposed by
Pock and Chambolle [44] is applied.

• Adaptive restarts. PDLP utilizes an adaptive restart-
ing scheme that is similar (but not identical) to the
one we now describe. Essentially, we restart the algo-
rithm whenever the normalized duality gap exhibits a
constant-factor shrinkage,

ρ∥z̄n,k−zn,0∥2
(z̄n,k) ≤ 1

2
ρ∥zn,0−zn−1,0∥2

(z̄n,0) , (12)

where we have used 1/2 for simplicity. The normalized
duality gap for LP can be computed with a linear time
algorithm; thus this adaptive scheme can be efficiently
implemented. Adaptive restarts can speed up the con-
vergence of PDLP in order to more efficiently find high-
accuracy solutions.

• Adaptive step-size. The theory-suggested step-size
1/∥A∥2 turns out to be too conservative in practice.
PDLP tries to find a step-size by a heuristic line search
that satisfies

s ≤ ∥zk+1 − zk∥2ω
2(yk+1 − yk)TK(xk+1 − xk)

, (13)

where ∥z∥ω :=

√
w∥x∥22 +

∥y∥2
2

ω and w is the current
primal weight. More details of the adaptive step-size
rule can be found in [2]. The inequality (13) is inspired
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Primal
Dual

Feasible Infeasible

Feasible xk, yk both converge xk diverges, yk converges
Infeasible xk converges, yk diverges xk, yk both diverge

Table 1: Behavior of PDHG for solving (3) under different feasibility assumptions.

by the O(1/k) convergence rate proof of PDHG [11, 31].
Employing an adaptive step-size rule results in the loss
of theoretical guarantees for PDLP, but it reliably works
in our numerical experiments.

• Primal weight update. The primal weight ω aims to
heuristically balance primal and dual progress, and it is
updated infrequently, in particular only when restarts
occur. A detailed description of primal weight updates
can be found in [2].

3.2 Numerical performance of PDLP

To illustrate the numerical performance of PDLP, we here
present two sets of computational results on LP benchmark
sets using the Julia implementation; these results were pre-
sented in [2]. The experiments were performed on three
datasets: 383 instances from the root-node relaxation of
MIPLIB 2017 collection [23] (which we dub MIP Relax-
ations), 56 instances from Mittelmann’s benchmark set [35]
(which we dub LP Benchmark), and Netlib LP bench-
mark [21] (which we dub Netlib). The progress metric we
use is the relative KKT error, i.e., primal feasibility, dual
feasibility and primal-dual gap, in the relative sense (see [2]
for a more formal definition).

The first experiment is to demonstrate the effectiveness of
the enhancements over vanilla PDHG. Figure 2 presents the
relative improvements compared to vanilla PDHG by sequen-
tially adding the enhancements. The y-axes of Figure 2 dis-
play the shifted geometric mean (shifted by value 10) of the
KKT passes normalized by the value for vanalla PDHG. As
we can see, with the exception of presolve for LP benchmark
at tolerance 10−4, each of our enhancements in Section 3.1
improves the performance of PDHG.

Figure 3 compares PDLP with other first-order methods:
SCS [41], in both direct mode (i.e., solving the linear equa-
tion with factorization) and matrix-free mode (i.e., solving
the linear equation with conjugate gradient), and our en-
hanced implementation of the extragradient method [27, 37].
The extragradient method is a special case of mirror prox,
and it is an approximation of PPM. Restarted extragradient
has similar theoretical results as restarted PDHG [4]. The
comparisons are summarized in Figure 3. We can see that
PDLP has superior performance in attaining both moderate
accuracy 10−4 and high accuracy 10−8 when compared with
the others.

4 Case studies of large LP

In this section, we present three case studies of PDLP on
large (i.e., containing more than 10 million nonzeros) LP
instances and compare its performance with Gurobi: per-
sonalized marketing, page rank, and robust production in-
ventory problem. PDLP has superior performances in the
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Figure 2: Summary of relative impact of PDLP’s improvements

first two instances, and Gurobi primal simplex has superior
performance in the third instance. Overall, we conclude that
for large instances for which factorizations can fit in mem-
ory, PDLP will not completely replace traditional LP solvers;
however, it is reasonable to consider running them together
in a portfolio. On the other hand, for problems for which
factorization scannot fit in memory, FOMs may be the only
option.
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Figure 3: Number of problems solved for MIP Relaxations (left), LP benchmark (middle), and Netlib (right) datasets within one
hour time limit.

4.1 Personalized marketing

Personalized marketing refers to companies sending out mar-
keting treatments (such as discounts, coupons, etc) to indi-
vidual customers periodically in order to attract more busi-
ness. Such marketing treatments are usually limited by the
total number of coupons that can be sent out, fairness con-
siderations, etc. [55] proposes solving the problem using lin-
ear programming, and demonstrates the effectiveness of the
model by utilizing the data of a department store collected
from two states in the US.

More formally, suppose there are I target households and
J available marketing actions. The decision variables, xj

i ∈
[0, 1], represent the probability a given household i receives
marketing action j. We denote the incremental profit that
the firm earns from household i if it receives marketing ac-
tion j as rji (these values can be suggested, for instance, by
a machine learning model). The first set of constraints rep-
resents volume constraints on each marketing action, and Sk

is the set of households in customer segment k. The second
set of constraints captures the volume constraint on all mar-
keting actions. The combination of the marketing actions
is determined by parameter cji . The third set of constrains
similarities between each marketing action. The total num-
ber of households in customer segment k is denoted by nk,
and λk1k2

j restricts the difference between customer segments
k1 and k2. The fourth set of constraints imposes similarity
constraints on all marketing actions. The difference between
customer segments k1 and k2 is restricted by γk1k2 , and dji is
the weighting factor to determine the combination of all mar-
keting actions. The last two constraints restrict the firm’s
action space so that each household has at most one mar-
keting action. The problem can be then formulated as in

(14). Table 2 summarizes the computation time of PDLP
(C++ version) versus Gurobi (primal simplex, dual simplex,
and barrier method) for four different models to 10−4 rela-
tive accuracy. For these instances, PDLP clearly shows its
advantages, and it is often the case that Gurobi runs out of
memory.

4.2 PageRank

PageRank refers to the well-known problem of ranking web
pages in search engine results. There are multiple ways to
model the problem, one of which is to formulate the problem
as finding a maximal right eigenvector of a stochastic matrix
S as a feasible solution of an LP [39], that is we search for
x feasible in

Sx ≤ x

1Tx = 1

x ≥ 0

(15)

Nesterov [39] stated the constraint ∥x∥∞ ≥ 1 to enforce x ̸=
0. We instead use 1Tx = 1 since it leads to a single linear
constraint.

Applegate et al. [2] generated a random scalable
collection of PageRank instances, using Barabási-
Albert [5] preferential attachment graphs, and the Julia
LightGraphs.SimpleGraphs.barabasi albert generator
with degree set to 3. More specifically, an adjacency matrix
is computed and scaled in the columns to make the matrix
stochastic and this matrix is called S′. Following the
standard PageRank formulation, a damping factor is applied
to S′, S := λS′ + (1 − λ)J/n, where J = 11T is all-ones
matrix. Intuitively, S encodes a random walk that follows a
link in the graph with probability λ or jumps to a uniformly



Volume 31 Number 1 – December 2023 9

max
xj
i

I∑
i=1

J∑
j=1

rjix
j
i

s.t. ajk ≤
∑
i∈Sk

xj
i ≤ bjk ∀j ∈ [J ], k ∈ [K]

Lk ≤
∑
i∈Sk

J∑
j=1

cjix
j
i ≤ Uk ∀k ∈ [K]

1

nk1

∑
i∈Sk1

xj
i ≤ λk1k2

j

1

nk2

∑
i∈Sk2

xj
i ∀j ∈ [J ], k1 ∈ [K], k2 ∈ [K]

1

nk1

∑
i∈Sk1

J∑
j=1

djix
j
i ≤ γk1k2

1

nk2

∑
i∈Sk2

J∑
j=1

djix
j
i ∀k1 ∈ [K], k2 ∈ [K]

J∑
j=1

xj
i ≤ 1 ∀i ∈ [I]

xj
i ≥ 0

(14)

Model # nonzeros Computation Time of Gurobi / PDLP (in seconds)
Gurobi Primal Simplex Gurobi Dual Simplex Gurobi Barrier PDLP

model A 25m 15488 18469 16573 175
model B 37m 31138 - - 341
model C 25m - - - 136
model D 13m - - - 127

Table 2: Solve time in second of Gurobi and PDLP for four personalized marketing instances to 10−4 relative
accuracy. “-” refers to raising an out-of-memory error.

random node with probability 1 − λ. The direct approach
to the damping factor results in a completely dense matrix.
However, using the fact that Jx = 1, we may rewrite the
constraint Sx ≤ x in (15) as

λ(S′x)i + (1− λ)/n ≤ xi, ∀i .

The results are summarized in Table 3. As we can see,
when the instances get 10 times larger, the running time
of PDLP and SCS roughly scale linearly as the size of the
instance, whereas Gurobi barrier, primal simplex, and dual
simplex scale much more poorly. The fundamental reason
for this is that the factorizations in the barrier and the sim-
plex methods turn out to be much denser than the original
constraint matrix. In this case, FOMs such as PDLP and
SCS have clear advantages over simplex and barrier meth-
ods. We also would like to highlight that LP may not be
the best way to solve PageRank problems, but PageRank
provides a convenient means to generate reasonable LPs of
different sizes.

4.3 Robust production inventory problem

The production inventory problem studies how to order prod-
ucts from factories to satisfy uncertain demand for a single
product over a selling season. Ben-Tal et al. [7] proposes a
linear decision rule for solving a robust version of this prob-
lem, which initiated a new trend of research in robust op-
timization. The robust problem can be formulated as in
(16), where E is the number of factors, T is the number of

factories, ζt is the uncertain demand that comes from an un-
certainty set Ut, yt,s,e is the decision variable in the linear
decision rule, cte is the per-unit cost, Qe is the maximum
total production level of factory e, pte is the maximum pro-
duction level for factory e in time period t, and Vmin and
Vmax specify bounds on remaining inventory level at each
time period. This problem can be formulated as an LP by
dualizing the inner maximization problem.

We compared the numerical performance of PDLP and
Gurobi on a robust production inventory LP instance with
19 million non-zeros. While Gurobi dual simplex and barrier
method failed to solve the problem within a one-day time
limit, primal simplex solves it to optimality with 531160 it-
erations in 11800 seconds, and PDLP solves the problem
to 10−4 accuracy with 358464 iterations in 26514 seconds.
For this instance, Gurobi primal simplex outperforms PDLP.
Our belief is that this problem is highly degenerate, and the
optimal solution space is large. A primal-simplex method
just needs to find one of the optimal extreme points, which
can be done efficiently.

5 Open questions

It is an exciting time to see how FOMs can significantly scale
up LP, an optimization problem that has been extensively
studied since 1940s. This is indeed just the beginning of the
application of FOMs to LP. There are still many open ques-
tions in this area, and we here mention three of them.

First, while [4] presents an optimal FOM for LP, which
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# nodes PDLP SCS Gurobi Barrier Gurobi Primal Simp. Gurobi Dual Simp.

104 7.4 sec. 1.3 sec. 36 sec. 37 sec. 114 sec.
105 35 sec. 38 sec. 7.8 hr. 9.3 hr. >24 hr.
106 11 min. 25 min. OOM >24 hr. -
107 5.4 hr. 3.8 hr. - - -

Table 3: Solve time for PageRank instances. Gurobi barrier has crossover disabled, 1 thread. PDLP and SCS solve to 10−8 relative
accuracy. SCS is matrix-free. Baseline PDHG is unable to solve any instances. Presolve not applied. OOM = Out of Memory. The
number of nonzero coefficients per instance is 8× (# nodes)− 18.

min
yt,1,...,yt,t∈RE : ∀t∈[T ]

max
ζ1∈U1,...,ζT+1∈UT+1

{
T∑

t=1

E∑
e=1

cte

(
t∑

s=1

yt,s,eζs

)}

subject to

T∑
t=1

(
t∑

s=1

yt,s,eζs

)
≤ Qe ∀e ∈ [E]

0 ≤
(

t∑
s=1

yt,s,eζs

)
≤ pte ∀e ∈ [E], t ∈ [T ]

Vmin ≤ v1 +

t∑
ℓ=1

E∑
e=1

(
ℓ∑

s=1

yℓ,s,eζs

)
−

t+1∑
s=2

ζs ≤ Vmax ∀t ∈ [T ]

∀ζ1 ∈ U1, . . . , ζT+1 ∈ UT+1 ,

(16)

matches the complexity lower bound, the linear convergence
rate depends on Hoffman’s constant of the KKT system,
which is known to be exponentially loose (since it consid-
ers the minimum over exponentially many items [43]), and
clearly cannot characterize the numerical success of PDLP.
A natural question is: can we characterize the global conver-
gence of PDHG for LP without using Hoffman’s constant, or
in other words, what is the fundamental geometric quantity
of the LP instance that drives the convergence of PDHG (or
more generally, FOMs)?

Second, state-of-the-art solvers for other continuous opti-
mization problems, such as quadratic programming, second-
order-cone programming, semi-definite programming and
nonlinear programming, are mostly interior-point algo-
rithms. While SCS can also be used to solve some of these
problems, it still needs to solve linear equations. How much
can the success of FOMs for LP be extended to other opti-
mization problems? What are the “right” FOMs for these
problems?

Third, how can FOMs be used to scale up mixed-integer pro-
gramming (MIP)? In order to utilize the solution of FOMs
for LP in a branch-and-bound tree, it is favorable to obtain
an optimal basic feasible solution (BFS) to node LPs; FOMs
typically do not directly output a BFS. Is there an efficient
approach to obtain an optimal BFS from the optimal solu-
tion returned by a FOM? Furthermore, the LPs solved in a
branch-and-bound tree are usually similar in nature. Can
a FOM take advantage of the warm start of LP solutions
therein?
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Policy gradient methods – methods that search for a policy
of interest by maximizing value functions using first-order
information – have become increasingly popular for sequen-
tial decision making in reinforcement learning, games, and
control. Guaranteeing the global optimality of policy gradi-
ent methods, however, is highly nontrivial due to the general
nonconcavity of value functions. In this exposition, we high-
light recent progress in understanding and developing pol-
icy gradient methods with global convergence guarantees,
putting an emphasis on finite-time convergence rates with
regard to salient problem parameters.

1 Introduction

Sequential decision making is a canonical task that lies at
the heart of a wide spectrum of disciplines such as reinforce-
ment learning (RL), games and control. Sequential decision
making finds numerous applications in autonomous driving,
robotics, supply chain management, resource scheduling, and
more. While classical approaches such as dynamic program-
ming [4] requires knowledge of an underlying model, modern
practice advocates for a model-free approach as an alterna-
tive. That is, one seeks a policy of interest directly based
on data collected through interaction with an environment,
without directly estimating the model. The advantage of the
model-free approach is that it is often more memory efficient,
as well as more agile to changes in the environment.

One prevalent class of model-free approaches is policy gradi-
ent (PG) methods. PG methods follow an optimizer’s per-
spective by formulating a value maximization problem with
regard to parameterized policies. Gradient updates, often
based on noisy feedback received from the environment, are
employed to improve the policy iteratively. PG methods and
their variants have become the de facto standard practice in
an increasing number of domains, due to their seamless inte-
gration with neural network parameterization and adaptivity
to various problem setups involving discrete, continuous or
mixed action and state spaces.

Despite the great empirical success of PG methods, little is
known about their theoretical convergence properties — es-
pecially when it comes to finite-time global convergence —
due to the nonconcavity of general value functions. Not until
very recently did any deep understanding begin to emerge;

shicongc@andrew.cmu.edu
yuejiec@andrew.cmu.edu
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recent understanding leverages the fact that PG methods are
typically operated on highly structured model classes, whose
induced optimization landscapes turn out to be much more
benign and tractable than previously thought. The execution
of problem-dependent tailored analyses, rather than relying
on black-box optimization theory, fuels recent breakthroughs
pioneered by Fazel et al. [14], Agarwal et al. [1], and Bhandari
and Russo [5], to name just a few. The purpose of this arti-
cle is to survey the latest efforts in understanding the global
convergence of PG methods in the fields of RL, game theory
and control, as well as highlight algorithmic ideas that en-
able fast global convergence, especially with regard to salient
problem parameters that are crucial in practice.

Organization. The rest of this article is organized as fol-
lows. Section 2 reviews PG methods in single-agent RL, fo-
cusing on solving tabular Markov decision processes (MDP).
Section 3 reviews PG methods in the game and multi-agent
RL setting, using the two-player zero-sum matrix game and
two-player zero-sum Markov game as illustrative examples.
Section 4 moves onto PG methods in control, focusing on
solving the linear quadratic regulator (LQR). We conclude
in Section 5.

Notation. We use ∥A∥, ∥A∥F and σmin(A) to represent the
spectral norm, the Frobenius norm, and the smallest singu-
lar value of a matrix A, respectively. For two vectors a and
b, we use a

b to denote their entrywise division provided it
exists, and ∥a∥∞ denotes the entrywise maximum absolute
value of a vector a. Given a set S, we let ∆(S) represent the
probability simplex over S. Given two distributions p and q,
KL
(
p ∥ q

)
denotes the Kullback-Leibler (KL) divergence from

q to p. Last but not least, let PC(·) denote the projection op-
erator onto the set C. To characterize iteration complexity,
we write T (x) = O(f(x)) when T (x) ≤ Cf(x),∀x ≥ X for
some C,X > 0. Here x is typically set to 1/ϵ or some other

function of salient problem parameters. We use Õ(·) to sup-
press logarithmic factors from the standard order notation
O(·).

2 Global convergence of policy gradient
methods in RL

In this section, we review recent progress in developing policy
gradient methods for single-agent RL, focusing on the basic
model of tabular Markov decision processes (MDPs).

2.1 Problem setting

Markov decision processes. An infinite-horizon dis-
counted MDP models the sequential decision making prob-
lem as M = (S,A, P, r, γ) where we have denoted the
state space S, the action space A, the transition kernel
P : S × A → ∆(S), the reward function r : S × A → [0, 1]
and the discount factor γ ∈ (0, 1). Upon the agent choosing
action a ∈ A at state s ∈ S, the environment will move to a
new state s′ according to the transition probability P (s′|s, a)
and assign a reward r(s, a) to the agent. The action selection
rule is implemented by a randomized policy π : S → ∆(A),
where π(a|s) specifies the probability of choosing action a in
state s. We shall focus exclusively on the case where both S
and A are finite throughout this article.

Value functions and Q-functions. The value function
V π : S → R is defined as the expected discounted cumulative
reward starting at state s:

V π(s) := E
[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s

]
,

where at ∼ π(·|st) is obtained by executing policy π and
st+1 ∼ P (·|st, at) is generated by the MDP. The Q-function
(or action-value function) Qπ : S × A → R is defined in a
similar manner with an initial state-action pair (s, a):

Qπ(s, a) := E
[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
.

In addition, the advantage function of policy π is defined
as

Aπ(s, a) := Qπ(s, a)− V π(s).

It is well-known that there exists an optimal policy π⋆ that
maximizes the value function V π(s) for all s ∈ S simultane-
ously [3, 28]. We denote the resulting optimal value function
and Q-function by V ⋆ and Q⋆, which satisfy the well-known
Bellman optimality equations. The optimal policy π⋆ can
be inferred from the optimal Q-function in a greedy fashion
as

π⋆(a|s) = argmax
a∈A

Q⋆(s, a), ∀ s ∈ S. (1)

Policy parameterizations. Given some prescribed initial
distribution ρ over S, policy optimization methods seek to
maximize the value function

V π(ρ) := V πθ (ρ)

over the policy π, where π := πθ is often parameter-
ized via some parameter θ. We overload the notation
to denote by V π(ρ) the expectation of the value function
Es∼ρ

[
V π(s)

]
. Note that it is straightforward to observe that

V ⋆(ϕ)−V π(ϕ) ≤ ∥ϕ/ρ∥∞(V ⋆(ρ)−V π(ρ)) for general choices
of ϕ ∈ ∆(S), which characterizes the effect of possible dis-
crepancies between the initial distributions in training and
deployment. We list several common choices of policy pa-
rameterization:

• Direct parameterization: the policy is directly parame-
terized by

πθ(a|s) = θ(s, a),

where θ ∈ {θ ∈ R|S||A| : θ(s, a) ≥ 0,
∑

a∈A θ(s, a) = 1}.

• Tabular softmax parameterization: For θ ∈ R|S||A|, the
policy πθ is generated through the softmax transform,

πθ(a|s) =
exp(θ(s, a))∑

a′∈A exp(θ(s, a′))
,

leading to an unconstrained optimization over θ. Al-
though beyond the scope of this exposition, softmax
parameterization is more popular in tandem with func-
tion approximation, since we may directly replace θ(s, a)
with fθ(s, a), the latter being typically implemented by
neural networks.
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Policy gradients. The gradient ∇θV
πθ (ρ) plays an in-

strumental role in developing first-order policy optimization
methods. To facilitate presentation, we shall first intro-
duce the discounted state visitation distributions of a policy
π,

dπs0(s) := (1− γ)

∞∑
t=0

γtP(st = s|s0),

where the probability P(·) is with respect to the trajectory
(s0, a0, s1, a1, · · · ) generated by the MDP under policy π.
We further denote by dπρ the discounted state visitation dis-
tribution when s0 is randomly drawn from distribution ρ,
i.e.,

dπρ (s) := Es0∼ρ

[
dπs0(s)

]
.

The policy gradient of parameterized policy πθ is then given
by [35]

∇θV
πθ (ρ) =

1

1− γ
Es∼d

πθ
ρ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)Qπθ (s, a)

]
=

1

1− γ
Es∼d

πθ
ρ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)Aπθ (s, a)

]
,

which can be evaluated, for example, via REINFORCE [35].
The use of the advantage function Aπθ (s, a), rather than the
Q-function Qπθ (s, a), in the expression for ∇θV

πθ (ρ) often
helps to reduce the variance of the estimated policy gradi-
ent.

For notational simplicity, we shall denote by θ(t) and π(t) the
parameter and the policy at the t-th iteration, and use V (t),

Q(t), A(t), d
(t)
ρ to denote V π(t)

, Qπ(t)

, Aπ(t)

, dπ
(t)

ρ , respec-
tively. In addition, we assume the policy gradients and the
value functions are deterministically evaluated throughout
this article, which enables us to focus on the optimization
aspect of PG methods.

2.2 Projected policy gradient method

The most straightforward first-order policy optimization
method is to adopt direct parameterization and perform pro-
jected gradient ascent updates like

θ(t+1) = P∆(A)|S|
(
θ(t) + η∇θV

(t)(ρ)
)
, (2)

or equivalently,

π(t+1) = P∆(A)|S|
(
π(t) + η∇πV

(t)(ρ)
)
,

where η > 0 is the learning rate, and

∇θ(s,a)V
(t)(ρ) = ∇π(s,a)V

(t)(ρ) =
1

1− γ
d(t)ρ (s)Q(t)(s, a).

As the value function V πθ (ρ) is 2γ|A|
(1−γ)3 -smooth [1], setting

the learning rate to 0 < η ≤ (1−γ)3

2γ|A| ensures monotonicity of

V (t)(ρ) in t. Additionally, and critically, it is established in
Agarwal et al. [1] that the value function satisfies the follow-
ing gradient domination condition.

Lemma 1 (Variational gradient domination). For any policy
π, we have

V ⋆(ρ)−V π(ρ) ≤ 1

1− γ

∥∥∥∥dπ⋆

ρ

ρ

∥∥∥∥
∞

max
π′∈∆(A)|S|

(π′−π)⊤∇πV
π(ρ).

The above lemma associates the optimality gap V ⋆(ρ) −
V π(ρ) with a variational gradient term, allowing the iterates
to converge globally as stated below.

Theorem 1 ([1]). With 0 < η ≤ (1−γ)3

2γ|A| , the iterates of the

projected PG method (2) satisfy

min
0≤t≤T

V ⋆(ρ)−V (t)(ρ) ≤ 4
√
|S|

1− γ

∥∥∥∥dπ⋆

ρ

ρ

∥∥∥∥
∞

√
2(V ⋆(ρ)− V (0)(ρ))

ηT
.

Theorem 1 establishes an iteration complexity of

O
(

|S||A|
(1−γ)6ϵ2

∥∥dπ⋆

ρ

ρ

∥∥2
∞

)
for finding an ϵ-optimal policy, which

was later improved to O
(

|S||A|
(1−γ)5ϵ

∥∥dπ⋆

ρ

ρ

∥∥2
∞

)
[36]. However,

the projection operator introduces O(log |A|) computational
overhead every iteration and is less compatible with function
approximation. This motivates the study of PG methods
that are compatible with unconstrained optimization, e.g.,
by using softmax parameterization.

2.3 Softmax policy gradient method

With softmax parameterization, the policy gradient method
consists of the iteration

θ(t+1) = θ(t) + η∇θV
(t)(ρ), (3)

where

∇θ(s,a)V
(t)(ρ) =

η

1− γ
d(t)ρ (s)π(t)(a|s)A(t)(s, a).

Remarkably, Agarwal et al. [1] established the asymptotic
global convergence of the softmax PG method (3) as fol-
lows.

Theorem 2 ([1]). With constant learning rate 0 < η ≤ (1−
γ)3/8, the softmax PG method (3) converges to the optimal
policy, i.e., V (t)(s)→ V ⋆(s) as t→∞ for all s ∈ S.
Mei et al. [24] later demonstrated an iteration complexity of
O( 1

c(M)2ϵ ) for achieving an ϵ-optimal policy, where c(M) is a

trajectory-dependent quantity depending on salient problem
parameters including the number of states |S| and the effec-
tive horizon (1 − γ)−1. Unfortunately, this quantity c(M)
can be rather small and does not exclude the possibility of
incurring an excessively large iteration complexity, as demon-
strated by the following hardness result [22].

Theorem 3 ([22]). There exist universal constants
c1, c2, c3 > 0 such that for any γ ∈ (0.96, 1) and |S| ≥
c3(1− γ)−6, one can find a γ-discounted MDP such that the
softmax PG method takes at least

c1
η
|S|2

c2
1−γ

iterations to reach ∥V ⋆ − V (t)∥∞ ≤ 0.15.

Therefore, though guaranteed to converge globally, softmax
PG can take (super-)exponential time to reduce the optimal-
ity gap to within even a constant level. To hint at the proof of
this theorem, the softmax PG method fails to achieve a rea-
sonable convergence rate when the probability π(t)(a⋆(s)|s)
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assigned to the optimal action a⋆(s) is close to zero. Agar-
wal et al. [1] proposed to penalize the policy for getting too
close to the border of the simplex constraint by imposing a
log barrier regularization

V πθ
ω (ρ) = V πθ (ρ) +

ω

|S||A|
∑

s∈S,a∈A
log πθ(a|s).

With an appropriate choice of regularization parameter ω,
the regularized softmax PG can achieve an ϵ-optimal policy

within O
(

|S|2|A|2
(1−γ)6ϵ2

∥∥∥d⋆
ρ

ρ

∥∥∥2
∞

)
iterations [1]. Nonetheless, this

regularization scheme is not as popular in practice, compared
to the entropy regularization scheme that will be discussed
in Section 2.5.

2.4 Natural policy gradient method

Both PG and softmax PG fall short of attaining an iteration
complexity that is independent of salient problem parame-
ters, especially with respect to the size of the state space
|S|. This ambitious goal can be achieved, somewhat sur-
prisingly, by employing the Fisher information matrix as a
preconditioner. This preconditioning leads to the natural
policy gradient (NPG) method [18],

θ(t+1) = θ(t) + η(Fθ(t)

ρ )†∇θV
(t)(ρ), (4)

where

Fθ
ρ := Es∼d

πθ
ρ ,a∼πθ(·|s)

[(
∇θ log πθ(a|s)

)(
∇θ log πθ(a|s)

)⊤]
is the Fisher information matrix, and † denotes the Moore-
Penrose pseudoinverse. With softmax parameterization, the
NPG updates take the form

θ(t+1) = θ(t) +
η

1− γ
A(t),

or equivalently,

π(t+1)(a|s) ∝ π(t)(a|s) exp
(ηQ(t)(s, a)

1− γ

)
.

It is noted that the (softmax) NPG update rule coincides
with the multiplicative weights update (MWU) method [10],
and that the update rule does not depend on the initial state
distribution ρ. Shani, Efroni, and Mannor [30] first estab-
lished a global convergence rate of O

(
1

(1−γ)2
√
T

)
using de-

caying learning rate ηt = O
(
1−γ√

t

)
. This result was improved

by Agarwal et al. [1] using a constant learning rate η, which
we now state.

Theorem 4 ([1]). With uniform initialization θ(0) = 0 and
constant learning rate η > 0, the iterates of NPG satisfy

V ⋆(ρ)− V (T )(ρ) ≤ 1

T

( log |A|
η

+
1

(1− γ)2

)
.

Encouragingly, as long as η ≥ (1−γ)2

log |A| , the iteration com-

plexity of NPG methods becomes O
(

1
(1−γ)2T

)
, which is in-

dependent of the size of the state-action space. On the other
hand, the iteration complexity of NPG is lower bounded

by ∆
(1−γ)|A| exp(−η∆T ) — established in Khodadadian et

al. [19] — where the optimal advantage function gap ∆ =
mins mina̸=a⋆(s) |A⋆(s, a)| ≥ 0 is determined by the MDP in-

stance. As the lower bound attains its maximum 1
(1−γ)eηT

when ∆ = 1
ηT , we immediately conclude that the sublinear

rate in Theorem 4 cannot be improved in T . Nonetheless,
two strategies to achieve even faster linear convergence with
NPG updates include (i) adopting increasing/adaptive learn-
ing rates [19, 6, 20, 36], or (ii) introducing entropy regular-
ization [7, 20, 38], which we shall elaborate on now.

2.5 Entropy regularization

Introducing entropy regularization is a popular technique
in practice to promote exploration [16]. Specifically, one
maximizes the entropy-regularized value function defined
as

V π
τ (s) = V π(s) +

τ

1− γ
Es′∼dπ

s

[
H(π(·|s′))

]
,

where H(π(·|s)) = −∑a∈A π(a|s) log π(a|s) is the entropy of
policy π(·|s), and τ > 0 serves as the regularization parame-
ter, referred to as the temperature. The entropy-regularized
Q-function is defined as

Qπ
τ (s, a) = r(s, a) + γEs′∼P (·|s,a)

[
V π
τ (s′)

]
.

The resulting optimal value function, Q-function and optimal
policy are denoted by V ⋆

τ , Q
⋆
τ , and π⋆

τ , respectively. From an
optimization perspective, the entropy term adds curvature
to the value function and ensures that the optimal policy
π⋆
τ is unique. Interestingly, in contrast to the greedy opti-

mal policy for the unregularized problem in (1), the optimal
policy of the entropy-regularized problem reflects “bounded
rationality” in decision making, namely

π⋆
τ (·|s) ∝ exp (Q⋆

τ (s, ·)/τ) .

It should be noted, however, that adding the entropy reg-
ularization generally does not make V π

τ (ρ) concave unless
τ is unreasonably large. Because the entropy function is
bounded by log |A|, the optimal entropy-regularized policy
is also guaranteed to be approximately optimal for the un-
regularized RL problem in the following sense:

V π⋆
τ (ρ) ≥ V ⋆(ρ)− τ log |A|

1− γ
.

Motivated by its benign convergence, we consider NPG for
the entropy-regularized problem. That is, we consider the
iteration

θ(t+1) = θ(t) + η(Fθ(t)

ρ )†∇θV
(t)
τ (ρ),

which can be equivalently written as

π(t+1)(a|s) ∝ π(t)(a|s)1− ητ
1−γ exp

(ηQ(t)
τ (s, a)

1− γ

)
. (5)

The following theorem shows that with appropriate choices of
constant learning rate η, entropy-regularized NPG converges
to the unique optimal policy π⋆

τ at a linear rate.
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Figure 1: Comparison of PG and NPG methods with entropy
regularization for a bandit problem (γ = 0) with 3 actions associ-
ated with rewards 1.0, 0.9 and 0.1. The regularization parameter
is set to τ = 0.1.

Theorem 5. For constant learning rate 0 < η ≤ (1 − γ)/τ
and uniform initialization, the entropy-regularized NPG up-
dates (5) satisfy

∥V ⋆
τ − V (T )

τ ∥∞ ≤
15(1 + τ log |A|)

1− γ
(1− ητ)T−1

and

V ⋆
τ (ρ)− V (T )

τ (ρ) ≤
∥∥∥∥ ρ

ν⋆τ

∥∥∥∥
∞

(
1 + τ log |A|

1− γ
+

(1− γ) log |A|
η

)
·max

{
γ, 1− ητ

1− γ

}T

.

Here, ν⋆τ is the stationary state distribution of policy π⋆
τ .

The first and the second bounds are due to Cen et al. [7]
and Lan [20]1 respectively, which lead to slightly different it-
eration complexities. Taken collectively, entropy-regularized
NPG takes no more than

Õ
(
min

{ 1

ητ
log

1

ϵ
,max

{ 1

1− γ
,
1− γ

ητ

}
log
∥ρ/ν⋆τ ∥∞

ϵ

})
iterations to find a policy satisfying V ⋆

τ (ρ) − V π
τ (ρ) ≤ ϵ.

We note that the difference in results stems from different
analysis approaches: Cen et al. [7] built their analysis upon
the contraction property of the soft Bellman operator (the
entropy-regularized counterpart of the original Bellman op-
erator), while Lan [20] made use of the connection between
regularized NPG and regularized mirror descent. This latter
connection to mirror descent can be understood by observ-
ing that the update rule (5) can be equivalently expressed
as

π(t+1)(·|s) = arg min
p∈∆(A)

〈
p,−Q(t)

τ (s, ·)
〉
− τH(p)

+
1

ηMD
KL
(
p ∥π(t)(·|s)

)
,

with ηMD = η
1−γ−ητ . The analysis of regularized RL can be

further generalized to adopt non-strongly convex regulariz-
ers [20], non-smooth regularizers [38] and state-wise policy
updates [21].

3 Global convergence of policy gradient
methods in games

In this section, we review recent progress in developing policy
gradient methods for games and multi-agent RL, focusing on

1We discard some of the simplification steps therein and state the
convergence result for a wider range of learning rate η.

the basic models of two-player zero-sum matrix games and
two-player zero-sum Markov games.

3.1 Problem settings

Two-player zero-sum matrix games. Given two play-
ers, taking actions from their respective action spaces A and
B, the zero-sum matrix game amounts to solving the saddle-
point optimization problem

max
µ∈∆(A)

min
ν∈∆(B)

V µ,ν := µ⊤Aν, (6)

where A ∈ R|A|×|B| denotes the payoff matrix with
∥A∥∞ ≤ 1, and µ ∈ ∆(A) and ν ∈ ∆(B) denote the
mixed/randomized policies of each player, defined respec-
tively as distributions over the probability simplex ∆(A) and
∆(B). Here, one player (i.e., the max player) seeks to maxi-
mize the value function while the other player (i.e., the min
player) seeks to minimize it. It is well-known, dating back to
Neumann [26], that the max and min operators in (6) can be
exchanged without affecting the solution. A pair of policies
(µ⋆, ν⋆) is said to be a Nash equilibrium (NE) of the matrix
game if

V µ⋆,ν ≥ V µ⋆,ν⋆ ≥ V µ,ν⋆ ∀(µ, ν) ∈ ∆(A)×∆(B). (7)

In words, the NE corresponds to when both players play their
best-response strategies against their opponent.

Two-player zero-sum Markov games. Moving onto
sequential decision-making, we consider an infinite-horizon
discounted Markov game which is defined as M =
{S,A,B, P, r, γ}, with discrete state space S, action spaces
of two players A and B, transition probability P , reward
function r : S ×A×B → [0, 1] and discount factor γ ∈ [0, 1).
A policy µ : S → ∆(A) (resp. ν : S → ∆(B)) defines how
the max player (resp. the min player) reacts to a given state
s, where the probability of taking action a ∈ A (resp. b ∈ B)
is µ(a|s) (resp. ν(b|s)). The transition probability kernel
P : S × A × B → ∆(S) defines the dynamics of the Markov
game, where P (s′|s, a, b) specifies the probability of transit-
ing to state s′ from state s when the players take actions a
and b respectively. The value function and Q-function of a
given policy pair (µ, ν) are defined similarly as in single-agent
RL, that is

V µ,ν(s) = E

[ ∞∑
t=0

γtr(st, at, bt)
∣∣ s0 = s

]
,

Qµ,ν(s, a, b) = E

[ ∞∑
t=0

γtr(st, at, bt)
∣∣ s0 = s, a0 = a, b0 = b

]
.

The minimax game value on state s is defined by

V ⋆(s) = max
µ

min
ν

V µ,ν(s) = min
ν

max
µ

V µ,ν(s).

Similarly, the minimax Q-function Q⋆(s, a, b) is defined
by

Q⋆(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)V
⋆(s′). (8)

It was established by [31] that there exists a pair of stationary
policies (µ⋆, ν⋆) attaining the minimax value on all states
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Figure 2: Cycles of MWU trajectories in a rock-paper-scissors
game from a benign initialization close to the equilibrium.

[15]. This pair is called the NE of the Markov game. We
seek an ϵ-optimal NE policy pair — denoted by ϵ-NE —
(µ̂⋆, ν̂⋆) that satisfies

V µ,ν̂⋆

(s)− ϵ ≤ V µ̂⋆,ν̂⋆

(s) ≤ V µ̂⋆,µ(s) + ϵ

for any µ ∈ ∆(A)S , ν ∈ ∆(B)S and s ∈ S.
With the success of the NPG method in single-agent RL, it
is tempting to apply the NPG method to two-player zero-
sum games, where each player executes the NPG updates
independently by treating the other player as part of their
environment. Notably, the NPG dynamics coincide with the
well-studied MWUmethod, or Hedge, that stems from online
optimization and game theory, whose average-iterate pol-
icy (i.e., ( 1

T

∑T
t=1 µ

(t), 1
T

∑T
t=1 ν

(t))) is shown to achieve a

convergent NE-gap at the rate of O(1/
√
T ) for two-player

zero-sum matrix games. However, two technical challenges
remain: 1) a demonstration of last-iterate (as opposed to
average-iterate) convergence results and 2) a generalization
of matrix game results to Markov games. We now discuss
these two challenges separately.

3.2 Global last-iterate convergence

Average-iterate convergence guarantees fall short of deter-
mining whether the learning trajectory converges towards
an NE or if the trajectory enters recurrent cycles instead. In
addition, for large-scale applications that involve the use of
neural networks, average-iterate convergence is also unsatis-
factory since averaging neural networks is intractable. Mer-
tikopoulos, Papadimitriou, and Piliouras [25] demonstrated
that MWU, when adopted by both agents in a two-player
zero-sum matrix game, suffers from the Poincaré recurrence
phenomenon that prevents the method from converging.
This holds for other methods in the family of “Follow the
Regularized Leader” (FTRL), which necessitates algorithmic
modifications to the original NPG/MWU updates.

Optimism. [29] proposed the use of optimistic updates,
which extrapolate the gradient from the previous iteration.
More specifically, in the context of two-player zero-sum ma-
trix games, Optimistic MWU (OMWU) updates at the t-th
iteration can be written as{

µ(t+1)(a) ∝ µ(t)(a) exp(η(2Aν(t) −Aν(t−1)))

ν(t+1)(b) ∝ ν(t)(b) exp(−η(2A⊤µ(t) −A⊤µ(t−1)))
.

Compared with the original MWU method{
µ(t+1)(a) ∝ µ(t)(a) exp(ηAν(t))

ν(t+1)(b) ∝ ν(t)(b) exp(−ηA⊤µ(t))
,

OMWU estimates the reward for the next iteration by ap-
pending the terms Aν(t) − Aν(t−1) and A⊤µ(t) − A⊤µ(t−1)

to the current payoff vectors Aν(t) and A⊤µ(t). The up-
dates can be equivalently formalized as Algorithm 2, where
{µ̄(t), ν̄(t)}∞t=0 are auxiliary variables that can be viewed
as some “predictive” sequence for facilitating the analy-
sis. Rakhlin and Sridharan [29] first proved that OMWU

Algorithm 2: OMWU for two-player zero-sum ma-
trix games

1 Input: Learning rate η, (optional) regularization
parameter τ .

2 Initialization: Set µ(0), ν(0), µ̄(0) and ν̄(0) as
uniform policies. Set τ = 0 when not using
regularization.

3 for t = 0, · · · ,∞ do
4 When t ≥ 1, update µ̄(t) and ν̄(t) as{

µ̄(t)(a) ∝ µ̄(t−1)(a)1−ητ exp(ηAν(t))

ν̄(t)(b) ∝ ν̄(t−1)(b)1−ητ exp(−ηA⊤µ(t)).

Update µ(t+1) and ν(t+1) as{
µ(t+1)(a) ∝ µ̄(t)(a)1−ητ exp(ηAν(t))

ν(t+1)(b) ∝ ν̄(t)(b)1−ητ exp(−ηA⊤µ(t))
.

5 end

yields O(log T ) regret in two-player zero-sum matrix games,

thus achieving a faster Õ(1/T ) average-iterate convergence
to an NE. Daskalakis, Fishelson, and Golowich [11] demon-
strated that OMWU achieves near-optimal O(poly(log T ))
regret for multi-player general-sum games as well. Daskalakis
and Panageas [13] established asymptotic last-iterate con-
vergence of OMWU assuming that the NE is unique. Wei
et al. [34] additionally demonstrated that OMWU converges
linearly to the NE under the same uniqueness assump-
tion.

Theorem 6 ([34, informal]). For a two-player zero-sum ma-
trix game with unique NE ζ⋆ = (µ⋆, ν⋆), the last iterate of
OMWU ζ(T ) = (µ(T ), ν(T )) converges to ζ⋆ linearly with con-
stant learning rate η ≤ 1/8.

Wei et al. [34] also investigated optimistic gradient descent
ascent (OGDA), another variant of optimistic update rules
by focusing on projected gradient updates (2), and derived
global linear convergence guarantees without placing as-
sumptions on NE uniqueness. A concrete iteration complex-
ity, however, remains elusive as both convergence rates de-
pend on unspecified problem-dependent parameters.

Regularization. Regularization has been proven to be in-
strumental in enabling faster convergence for single-agent
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RL. In the context of game theory, entropy regularization is
closely related to quantal response equilibrium (QRE) [23],
an extension to an NE with bounded rationality. Formally
speaking, when the two agents seek to maximize their own
entropy-regularized payoffs

max
µ∈∆(A)

min
ν∈∆(B)

V µ,ν
τ := µ⊤Aν + τH(µ)− τH(ν),

the resulting equilibrium ζ⋆τ = (µ⋆
τ , ν

⋆
τ ) is referred to as a

QRE and satisfies{
µ⋆
τ (a) ∝ exp([Aν⋆τ /τ ]a)

ν⋆τ (b) ∝ exp([A⊤µ⋆
τ/τ ]b)

, ∀a ∈ A, b ∈ B.

An approximate ϵ-QRE is defined similarly to an ϵ-NE, by re-
placing V µ,ν in (7) with its regularized counterpart V µ,ν

τ . An

ϵ/2-QRE is guaranteed to be an ϵ-NE by setting τ = Õ(ϵ).
Cen, Wei, and Chi [9] proposed entropy-regularized OMWU
(summarized in Algorithm 2) to combine the ideas of regu-
larization and optimism, and proved the method converges
to a QRE at a linear rate without any assumption on the
uniqueness of an NE.

Theorem 7 ([9, informal]). With constant learning rate 0 <
η ≤ min{1/(2τ +2), 1/4}, the last iterate ζ(T ) = (µ(T ), ν(T ))
generated by entropy-regularized OMWU converges to a QRE
ζ⋆τ at a linear rate 1− ητ .

This result gives an iteration complexity of O
(
(1 +

1/τ) log 1/ϵ
)
for finding an ϵ-QRE in a last-iterate sense,

or an iteration complexity of Õ
(
1/ϵ
)
for finding an ϵ-NE

by setting τ = Õ(ϵ). One might wonder if using regular-
ization alone can also ensure last-iterate convergence, which
amounts to studying the update rule{

µ(t)(a) ∝ µ(t−1)(a)1−ητ exp(ηAν(t))

ν(t)(b) ∝ ν(t−1)(b)1−ητ exp(−ηA⊤µ(t))
.

The answer turns out to be yes, as investigated recently in
Sokota et al. [32] and Pattathil, Zhang, and Ozdaglar [27].
The same contraction rate 1−ητ can be obtained albeit with
a more restrictive choice of learning rate η = O(τ). This

result translates to an iteration complexity of Õ(1/ϵ2) for
finding an ϵ-NE, slower than the entropy-regularized OMWU
by a factor of Õ

(
1/ϵ
)
.

3.3 Extension to Markov games

Given some prescribed initial state distribution ρ, one can
solve the saddle-point optimization problem

max
µ∈∆(A)|S|

min
ν∈∆(B)|S|

V µ,ν(ρ)

for two-player zero-sum Markov games. A key property for
two-player zero-sum matrix games is that the value func-
tion V µ,ν is bilinear in the policy space, which unfortunately
no longer holds in the Markov setting. Two strategies have
been successful in establishing provable policy gradient meth-
ods for two-player zero-sum Markov games: 1) leveraging
tools from saddle-point optimization theory for nonconvex-
nonconcave functions or 2) exploiting recursive structures of
the value function.

Conventional wisdom in nonconvex-nonconcave saddle-point
optimization suggests adopting two-timescale learning rates,
which enforces a much smaller learning rate on one of the
players. Daskalakis, Foster, and Golowich [12] demonstrated
that when the two players adopt projected gradient descent
ascent (GDA) updates with two-timescale learning rates, the
method achieves an average-iterate convergence to an ϵ-NE
within Õ(poly(ϵ−1, |S|, |A|, |B|)) iterations (omitting addi-
tional instance-dependent parameters). Zeng, Doan, and
Romberg [37] showed that softmax policy GDA updates with
entropy regularization yield a last-iterate convergence with
an improved iteration complexity.

However, two-timescale learning rates give asymmetric con-
vergence guarantees, that is, only the slow learner is guaran-
teed to find an approximate NE policy, while the fast learner
approximates the best response to the slow learner through-
out the learning process. A natural question arises: is it
possible to design symmetric algorithms with an improved
iteration complexity?

Smooth value updates. Instead of employing policy up-
dates using only vanilla gradient information ∇µV

µ,ν(ρ) and
∇νV

µ,ν(ρ), another line of work seeks to divide the up-
dates into two parts, where the policy updates are pro-
vided by two-player zero-sum matrix game algorithms with
Q(t)(s) = [Q(t)(s, a, b)]a∈A,b∈B, where

Q(t)(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)

[
V (t−1)(s′)

]
, (9a)

presuming the role of payoff matrices for all s ∈ S, and the
value updates are given by

V (t)(s) = (1− αt)V
(t−1)(s) + αtf

(t)(s). (9b)

Here, αt > 0 is the learning rate for the value function and
f (t)(s) is a one-step look-ahead value estimator for state s,
typically defined as

f (t)(s) = µ(t)(s)⊤Q(t)(s)ν(t)(s), (10)

or

f (t)(s) = µ(t)(s)⊤Q(t)(s)ν(t)(s) + τH(µ(t)(s))− τH(ν(t)(s))
(11)

when we incorporate entropy regularization. These methods
are akin to the prevalent actor-critic type algorithms. The
algorithm procedure is summarized in Algorithm 3. Note
that when setting αt = 1 and f (t)(s) to the one-step minimax
game value

f (t)(s) = max
µ(s)∈∆(A)

min
ν(s)∈∆(B)

µ(s)⊤Q(t)(s)ν(s),

we recover the classical value iteration for two-player zero-
sum Markov games.

Wei et al. [33] first demonstrated that Algorithm 3 with
matrix alg OGDA and decaying learning rate αt =
2/(1−γ)+1
2/(1−γ)+t yields both average-iterate and last-iterate con-

vergences to an NE. Cen et al. [8] achieved an improved
convergence rate by adopting entropy regularization and the
OMWU method (e.g. Algorithm 2).
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Algorithm 3: Actor-critic for two-player zero-sum
Markov games

1 Input: Learning rate for Q-value function {αt}∞t=0,
learning rate for policies η, policy optimization
method for two-player zero-sum matrix game
matrix alg, (optional) regularization parameter τ .

2 Initialization: Set Q(0) = 0 and µ(0), ν(0) as uniform
policies.

3 for t = 0, 1, · · · do
4 for all s ∈ S do in parallel
5 Invoke matrix alg with payoff matrix Q(t)(s)

and learning rate η to update µ(t+1)(s),
ν(t+1)(s).

6 Update Q(t+1)(s) and V (t+1)(s) according to
(9) with learning rate αt+1.

7 end

8 end

Theorem 8 ([8, Theorem 1]). Algorithm 3 with matrix alg

entropy-regularized OMWU, entropy-regularized value up-
dates (11) and constant learning rates η = O((1− γ)3/|S|),
αt = ητ guarantees last-iterate convergence to a QRE at a
linear rate 1− ητ .

This theorem demonstrates an iteration complexity of

Õ
(

|S|
(1−γ)4τ log 1/ϵ

)
for finding an ϵ-QRE, or Õ

(
|S|

(1−γ)5ϵ

)
for

finding an ϵ-NE. It remains an open problem to achieve
an iteration complexity with better dependency on |S| and
(1− γ)−1.

4 Global convergence of policy gradient
methods in control

In this section, we briefly review policy gradient methods for
control, focusing on a standard control problem called linear
quadratic regulators (LQRs). This line of research is based
primarily on the excellent work of Fazel et al. [14]. We refer
interested readers to Hu et al. [17] for a recent comprehensive
survey on developments of policy optimization for general
control problems including, but not limited to, H∞ control
and risk-sensitive control.

4.1 Problem setting

Linear quadratic regulator (LQR). Consider a
discrete-time linear dynamic system

x(t+1) = Ax(t) +Bu(t),

where x(t) ∈ Rd, u(t) ∈ Rk are respectively the state and
the input at time t and A ∈ Rd×d, B ∈ Rd×k specify system
transition matrices. The linear quadratic regulator (LQR)
problem with an infinite horizon is defined as

min
u(t)

Ex(0)∼D

[ ∞∑
t=0

(
x(t)⊤Qx(t) + u(t)⊤Ru(t)

)]
, (12)

where D determines the distribution of the initial state x(0),
and where Q ∈ Rd×d and R ∈ Rk×k are positive definite
matrices parametrizing the costs. Classical optimal control
theory [2] tells us that under certain stability conditions (e.g.,

controllability), it is ensured that the optimal cost is finite
and can be achieved by a linear controller

u(t) = −K⋆x(t),

where K⋆ ∈ Rk×d is the optimal control gain matrix. From
an optimization perspective, it is therefore natural to cast
the LQR problem as minimizing the cost over all linear con-
trollers u(t) = −Kx(t) with K ∈ Rk×d,

min
K∈K

C(K) := Ex(0)∼D

[
x(0)⊤PKx(0)

]
,

where

PK =

∞∑
t=0

((A−BK)⊤)t(Q+K⊤RK)(A−BK)t.

The feasible set K = {K : ∥A − BK∥2 < 1} ensures PK is
well defined for all K ∈ K.
4.2 Policy gradient method

The policy gradient method for the LQR problem is simply
defined as

K(t+1) = K(t) − η∇KC(K(t)), (13)

where η > 0 is the learning rate. In addition, the policy
gradient ∇KC(K) can be written as

∇KC(K) = 2
(
(R+B⊤PKB)K −B⊤PKA

)
ΣK ,

where ΣK = Ex(0)∼D
[∑∞

t=0 x
(t)x(t)⊤] denotes the state cor-

relation matrix.

Like the RL problem, the objective function C(K) is noncon-
vex in general, which makes it challenging to claim a global
convergence guarantee. Fortunately, the LQR problem sat-
isfies the following gradient dominance condition [14].

Lemma 2 (Gradient dominance). Suppose that λ =
σmin(Ex(0)∼D

[
x(0)x(0)⊤]) > 0. It holds that

C(K)− C(K⋆) ≤ ∥ΣK⋆∥2
λ2σmin(R)

∥∇KC(K)∥2F .

The gradient dominance property provides hope for attain-
ing global linear convergence of the policy gradient method
to the optimal policy. To complete the puzzle, however, we
also desire smoothness of the cost function C(K). Such
smoothness cannot be established in full generality; C(K)
is infinite when K moves beyond K. Fortunately, however,
smoothness can be established for any given sublevel set
Kγ̄ = {K ∈ K : C(K) ≤ γ̄}, which suffices to establish
the following desired convergence result.

Theorem 9 (Fazel et al. [14]). Assume that C(K(0)) is fi-
nite. With an appropriate constant learning rate

η = poly
(λσmin(Q)

C(K(0))
, ∥A∥−1

2 , ∥B∥−1
2 , ∥R∥−1

2 , σmin(R)
)
,

the policy gradient method (13) converges to the optimal pol-
icy at a linear rate:

C(K(t+1))−C(K⋆) ≤
(
1− λ2σmin(R)η

∥ΣK⋆∥2

)(
C(K(t))−C(K⋆)

)
.
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To find an ϵ-optimal control policyK(T ) satisfying C(K(T ))−
C(K⋆) ≤ ϵ, the above theorem ensures that the policy gra-
dient method takes no more than

∥ΣK⋆∥2
λ2σmin(R)η

log
C(K(0))− C(K⋆)

ϵ

iterations.

4.3 Natural policy gradient method

To facilitate the development of an NPG in this problem
setting, we consider a linear policy with additive Gaussian
noise, specified as

u(t) ∼ π(·|x(t)) = N (−Kx(t), σ2I).

The NPG update rule [18] then reads like

vec(K(t+1)) = vec(K(t))− η(FK(t)

D )†vec(∇KC(K(t))), (14)

where vec(K) flattens K ∈ Rk×d into a vector in row-major
order, and the Fisher information matrix FK

D ∈ Rkd×kd is
given by

FK
D = E

[ ∞∑
t=0

vec(∇K log π(u(t)|x(t)))vec(∇K log π(u(t)|x(t)))⊤

]

= σ−2E

[ ∞∑
t=0

diag(x(t)x(t)⊤, · · · , x(t)x(t)⊤)

]
= σ−2diag(ΣK , · · · ,ΣK).

Merging the dummy variance σ2 into the learning rate η, and
reshaping back into the matrix form, the NPG update rule
(14) can be equivalently rewritten as

K(t+1) = K(t) − η∇KC(K(t))Σ−1
K(t) ,

which modifies the update direction using the state corre-
lation matrix. This allows for an improved progress fol-
lowing a single update, as demonstrated by the following
lemma.

Lemma 3 (Fazel et al. [14]). Assume that C(K(t)) is finite
and the learning rate satisfies η ≤ 1

∥R+B⊤P
K(t)B∥2

. Then,

the NPG update satisfies

C(K(t+1))−C(K⋆) ≤
(
1− λσmin(R)η

∥ΣK⋆∥2

)(
C(K(t))−C(K⋆)

)
.

The improvement is twofold: 1) the convergence rate is im-
proved by a factor of λ, and 2) the result allows for a larger
learning rate that would not be possible under an analysis
based on smoothness. By adopting η = 1

∥R∥2+∥B∥2
2C(K(0))λ−1 ,

one can show that the learning rate requirement is satisfied
over the whole trajectory, which leads to an iteration com-
plexity of

∥ΣK⋆∥2
λσmin(R)η

log
C(K(0))− C(K⋆)

ϵ

for finding an ϵ-optimal control policy. Last, but not least, it
is possible to achieve an even-faster convergence rate by as-
suming access to more complex oracles, i.e., those employed

in the Gauss-Newton method. The update rule in this case
is given by

K(t+1) = K(t) − η(R+B⊤PK(t)B)−1∇KC(K(t))Σ−1
K(t) ,

which allows a constant learning rate as large as η = 1 and
an improved iteration complexity of

∥ΣK⋆∥2
λ

log
C(K(0))− C(K⋆)

ϵ
.

5 Conclusions
Policy gradient methods continue to be at the forefront of
data-driven sequential decision making, due to their sim-
plicity and flexibility in integrating with other advances in
computation from adjacent fields, such as high performance
computing and deep learning. Our focus in this article was
constrained to the optimization aspects of policy gradient
methods, assuming access to exact gradient or policy eval-
uations. In reality, these information need to estimated by
samples collected via various mechanisms and are thus noisy.
This leads to deep interplays between statistics and optimiza-
tion. We hope this exposition provides a teaser to invite
more interest from the optimization community to work in
this area.
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Bulletin
Email items to siagoptnews@lists.mcs.anl.gov for consider-
ation in the bulletin of forthcoming issues.

Event Announcements

25th International Symposium
on Mathematical Programming
(ISMP)
21-26 July 2023
Montréal, Canada

ISMP is a triennial conference that gathers scholars from
around the globe to share recent developments in the field
of Mathematical Optimization. The 2024 edition will take
place at the Palais des congrès in Montréal, Canada. The
deadlines are 29 February 2024 for stream submission, 19
April 2024 for abstract submission, and the following for
registering: 29 February 2024 (early bird) and 20 June 2024
(normal).

URL: https://ismp2024.gerad.ca

Books

Problems and Solutions for Integer
and Combinatorial Optimization:
Building Skills in Discrete Optimiza-
tion
by Mustafa Ç. Pınar and Deniz Akkaya
Publisher: SIAM

ISBN: 978-1-61197-775-2

Published: 2023

Series: MOS-SIAM Series on Optimization

About the book: This book contains 102 solved problems
in integer and combinatorial optimization, with a wide range
of difficulty and selected from a vast set of topics and appli-
cations. Among the subjects covered in the book we find
modeling with integer variables, Branch and Bound, cutting
planes, models for network optimization, and many others.
The authors also maintain an associated website with more
problems and lecture notes.

Audience: this book is meant for undergraduate and grad-
uate students in Mathematics, Computer Science, and Engi-
neering, and for instructors to use with other course material
for Discrete Optimization courses.

siagoptnews@lists.mcs.anl.gov
https://ismp2024.gerad.ca
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Other Announcements

Gödel prize to S. Fiorini, S. Massar, S. Pokutta,
H.R. Tiwary, R. de Wolf, and T. Rothvoss

The Kurt Gödel prize is awarded annually to papers in the
area of theoretical computer science. It is sponsored by
the European Association for Theoretical Computer Science
(EATCS) and the Special Interest Group on Algorithms and
Computation Theory of the ACM.

The 2023 edition of the Gödel prize has been awarded
to

• Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans
Raj Tiwary, and Ronald de Wolf, for their paper “Ex-
ponential Lower Bounds for Polytopes in Combinatorial
Optimization,” STOC 2012: 95-106 and Journal of the
ACM 62(2), 17:1-17:23 (2015);

• Thomas Rothvoss for his paper “The matching polytope
has exponential extension complexity,” STOC 2014:
263-272, Journal of the ACM 64(6), 1-19 (2017).

See https://sigact.org/prizes/gödel.html for more informa-
tion. Congratulations to all awardees!

SIAG on Optimization Test of Time Award

The SIAG on Optimization Test of Time Award, established
in 2022, is awarded every three years to an individual or
group of researchers for an outstanding single piece of work
that has had significant and sustained influence on the field of
optimization over a time period of at least 10 years preceding
the year of the award.

The recipients of the 2023 SIAG on Optimization Test of
Time Award are Samuel Burer, University of Iowa, and Re-
nato D.C. Monteiro, Georgia Institute of Technology, for
their paper, “A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization,” Mathe-
matical Programming Series B, No. 95, pp. 329-357, (2003),
which has revolutionized computational methods for solv-
ing certain classes of large scale semidefinite programming
problems. See https://www.siam.org for more information.
Congratulations Sam and Renato!

SIAG on Optimization Best Paper Award

The SIAG on Optimization Best Paper Prize is awarded ev-
ery three years to the author(s) of the most outstanding pa-
per, as determined by the prize committee, on a topic in
optimization published in the four calendar years preceding
the award year.

The recipients of the 2023 SIAG on Optimization Best Pa-
per Prize are Damek Davis, Cornell University, and Dmitriy
Drusvyatskiy, University of Washington for their paper,
“Stochastic Model-Based Minimization of Weakly Convex
Functions,” SIAM Journal on Optimization, Vol. 29, No.
1, pp. 207–239, (2019), which for the first time establishes
convergence rates of a broad family of algorithms for the
stochastic optimization of weakly convex functions. See
https://www.siam.org for more information. Congratula-
tions Damek and Dmitriy!

Chair’s Column
A research community requires support and dedication, and
my first words go to the past officers of our SIAG on Opti-
mization: Katya Scheinberg (Chair), Samuel A. Burer (Vice
Chair), Jeffrey Linderoth (Program Director), and Stefan M.
Wild (Secretary). Thank you Katya, Sam, Jeff, and Stefan
for leading us through pandemic time—it wasn’t easy for
sure! The creation and successful launch of the Test of Time
prize will certainly be a long lasting contribution.

We are extremely fortunate to count on three talented op-
timizers on our new board: Coralia Cartis (Vice Chair),
Gabriele Eichfelder (Program Director), and Juliane Mueller
(Secretary). It has been a great pleasure to work with Cora,
Gabi, and Juli, and I hope that we can together contribute to
further develop our SIAM Activity Group. I would also like
to thank Nicole Gawel, Membership Coordinator at SIAM,
for supporting and motivating us.

What a joy it was attending the 2023 SIAM Conference on
Optimization at Seattle! A large conference like SIOPT 2023
isn’t possible without the contribution of many people, in
this case from the inspirational main organizers (Coralia Car-
tis, Katya Scheinberg, and Jeff Linderoth) and the dedicated
members of the organizing committee to the numerous ses-
sion organizers and all SIAM staff members involved. To all
of them, I express my sincere gratitude. The speakers and
the participants did the rest, and such a rest wasn’t trivial as
we had a vibrant conference, full of interesting talks, follow-
up discussions, and social interaction. Here are SIOPT 2023
stats (provided by SIAM):

• Total attendance (includes ACDA 2023): 1,220 (previ-
ous peak was 694 at OP17 in Vancouver). Note that
only 3% of the attendance was purely ACDA. Members
of both ACDA and Optimization SIAG’s accounted for
16%. The 81% remaining were purely Optimization.

• Total number of minisymposia: 336 (x 3 talks per mini
= 1,008 minisymp talks)

• Total number of contributed talks: 137

• Total number of posters: 12

• Total number of plenary/prize talks: 9

• Total number of minitutorials: 4

• Parallelism: 24 sessions in parallel

In our SIOPT 2023 business meeting, we have decided to
launch a call to better identify and select the location of
our 2026 SIAM Conference on Optimization. The call has
been posted at SIAM Engage and at a number of other
optimization forums and digests (the text is reproduced in

https://sigact.org/prizes/g%C3%B6del.html
https://www.siam.org/prizes-recognition/activity-group-prizes/detail/siag-opt-test-of-time
https://www.siam.org/prizes-recognition/activity-group-prizes/detail/siag-opt-best-paper-prize


24 SIAG on Optimization Views and News

a postscript below). I am very much looking forward to
a number of strong proposals. I take this opportunity to
thank Richard O. Moore, Director of Programs and Ser-
vices at SIAM, who has been very supportive during this
process.

In our SIOPT 2023 business meeting, we also discussed 3
alternatives for future activities of our SIAG: (1) On-line
mini-courses; (2) Regional/sectional (in-person) events; (3)
On-line social hours. The idea of social hours did not at-
tract much enthusiasm, and we have decided to not pursue
it.

We are now asking for suggestions regarding on-line mini-
courses. Please write to us if you have interesting
ideas! Please include the topic, why the topic is timely,
potential instructors, approximate duration, and potential
interested audience. As we said in a recent SIAM Engage
post, a questionnaire may later be sent if there is a need to
sense a majority of opinions.

My final words go to the current editors of our SIAG on Op-
timization Views-and-News: Pietro Belotti, Dmitriy Drusvy-
atskiy, and Matt Menickelly. Thank you Dima, Matt, and
Pietro for your outstanding work! I was the editor of our
newsletter from 2003 to 2008, and I know from experience
how much work is required to promote interesting articles,
follow up with authors, review all materials, and edit every-
thing together.

I wish you all a very pleasant and productive 2024, Luis

Luis Nunes Vicente (Chair, SIAG on Optimization)
Timothy J. Wilmott Endowed Chair Professor and Depart-
ment Chair
Department of Industrial and Systems Engineering, Lehigh
University

Comments from the Editors
Happy New Year, SIAG on Optimization! In this slightly
delayed December issue, we are pleased to present two fea-
ture articles highlighting trends and developments in our
field.

In our first article, Haihao Lu discusses the use of first-order
methods for solving problems in linear programming (LP).
While simplex methods and interior point methods are the
gold standard for commercial LP solvers, the need to solve
increasingly larger instances merits a reexamination of some
of the practical considerations underlying these methods. In
particular, many of the factorizations involved in subprob-
lems for these standard methods involve more memory than
is available to many computational platforms. Moreover,
making efficient use of GPUs and massive parallelism for
these standard methods is nontrivial. Contrasting these con-
cerns with first-order methods, which require only matrix-
vector multiplications (as opposed to factorizations) and al-
most trivially exploit parallelism, first-order methods are an
attractive alternative. This article considers fundamental
convergence results concerning the application of first-order

methods for the solution of LPs, and proceeds with the many
practical considerations that must be made to make first-
order methods a viable alternative to standard methods for
solving LPs.

In our second article, Shicong Cen and Yuejie Chi provide an
optimization-focused exposition to policy gradient methods,
a class of algorithms commonly employed in model-free rein-
forcement learning. The article provides an introduction to
fascinating convergence results concerning how (given access
to a deterministic expectation of appropriate value functions)
various iterative methods based on the projected gradient it-
eration can identify globally optimal policies in the sense
of traditional Markov decision processes. The article then
specifies this general framework to show how this class of al-
gorithms can be used to find Nash equilibria in (sequential)
matrix games, as well as globally optimal controllers in some
common settings of optimal control.

All issues of Views and News are available online at https:
//siagoptimization.github.io/ViewsAndNews.

The SIAG on Optimization Views and News mailing list,
where editors can be reached for feedback, is siagoptnews@
lists.mcs.anl.gov. Suggestions for new issues, comments,
and papers are always welcome.

Pietro Belotti
DEIB, Politecnico di Milano
Email: pietro.belotti@polimi.it
Web: https://belotti.faculty.polimi.it

Dmitriy Drusvyatskiy
Mathematics Department, University of Washington
Email: ddrusv@uw.edu
Web: https://sites.math.washington.edu/~ddrusv

Matt Menickelly
Argonne National Laboratory
Email: mmenickelly@anl.gov
Web: https://www.mcs.anl.gov/~menickmj

http://www.lehigh.edu/lnv
https://siagoptimization.github.io/ViewsAndNews
https://siagoptimization.github.io/ViewsAndNews
siagoptnews@lists.mcs.anl.gov
siagoptnews@lists.mcs.anl.gov
pietro.belotti@polimi.it
https://belotti.faculty.polimi.it
ddrusv@uw.edu
https://sites.math.washington.edu/~ddrusv
mmenickelly@anl.gov
https://www.mcs.anl.gov/~menickmj
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