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Bilevel optimization is a powerful tool for model-
ing hierarchical decision making processes. However,
the resulting problems are challenging to solve—
both in theory and practice. Fortunately, there have
been significant algorithmic advances in the field
so that we can solve much larger and also more
complicated problems today compared to what was
possible to solve two decades ago. This results in
researchers trying to solve increasingly challenging
bilevel problems. In this article, we give a brief in-
troduction to one of these more challenging classes
of bilevel problems: bilevel optimization under un-
certainty using robust optimization techniques. To
this end, we briefly state different versions of uncer-
tain bilevel problems that result from different levels
of cooperation between the leader and follower, and
from when the uncertainty is revealed. We high-
light these concepts using an academic example and
discuss recent results from the literature concerning
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both complexity and solution approaches. Finally,
we discuss how the sources of uncertainty in bilevel
optimization are much richer than in single-level op-
timization and, to this end, we introduce the concept
of decision uncertainty.

1 Introduction
Bilevel optimization has its roots in economics and
dates back to the seminal works by von Stackelberg
[38, 39]. It was introduced to the field of mathe-
matical optimization much later in publications by
Bracken and McGill [14] and Candler and Norton
[18]. We use bilevel optimization to model hierar-
chical decision making processes, typically with two
players, which we refer to as the leader and the fol-
lower. Despite its intrinsic hardness [29, 30], several
innovative works pushed the boundaries of compu-
tational bilevel optimization so that we can tackle
some relevant practical applications today; see, e.g.,
Kleinert et al. [32] for a recent survey on computa-
tional bilevel optimization as well as the annotated
bibliography by Dempe [22].

The main goal of this article is to give a brief in-
troduction to some basic concepts of bilevel opti-
mization problems under uncertainty. The field is
still in its infancy but, nevertheless, due to its rele-
vance in many practical applications, it is develop-
ing very quickly. In classical, i.e., single-level, opti-
mization, there are two major approaches to address
uncertainty: stochastic optimization [13, 31] and ro-
bust optimization [6, 8, 9, 35]. The same two paths
have been followed as well in bilevel optimization
dating back to the 1990s. However, the sources of
uncertainty are much richer in bilevel optimization
compared to single-level optimization. To make this
more concrete, let us consider the linear optimiza-
tion problem minx{c⊤x : Ax ≥ b}. It can “only” be
subject to uncertainty due to uncertainties in the
problem’s data c, A, and b. Throughout this article,
we will refer to such uncertainty as data uncertainty.
Moreover, a bilevel optimization problem may also
be subject to an additional source of uncertainty,
which is due to its nature that it combines two differ-
ent decision makers in one model. Hence, there can
be further uncertainty involved either if the leader is
not sure about the reaction of the follower or if the
follower is not certain about the observed leader’s de-
cision. We will denote this additional type of uncer-
tainty as decision uncertainty. Obviously, decision
uncertainty does not play any role in single-level op-
timization since only one decision maker is involved.

In this introductory article, we will solely focus
on data uncertainty that is tackled using concepts
from robust optimization. For more details regard-
ing stochastic bilevel optimization, decision uncer-
tainty, etc. we refer to our recent survey [3].

2 Problem Statement
We start by considering the deterministic bilevel
problem (we explain the quotation marks below)

“min
x∈X

” F (x, y) (1a)

s.t. G(x, y) ≥ 0, (1b)
y ∈ S(x), (1c)

where S(x) denotes the set of optimal solutions of
the x-parameterized problem

min
y∈Y

f(x, y) (2a)

s.t. g(x, y) ≥ 0. (2b)

Problem (1) is referred to as the upper-level (or the
leader’s) problem and Problem (2) is the so-called
lower-level (or the follower’s) problem. Moreover,
we refer to x ∈ X and y ∈ Y as the leader’s and the
follower’s variables, respectively. The sets X ⊆ Rnx

and Y ⊆ Rny can be used to include possible in-
tegrality constraints. The objective functions are
given by F, f : Rnx × Rny → R and the con-
straint functions by G : Rnx × Rny → Rm as well
as g : Rnx × Rny → Rℓ. In the case that the lower-
level problem does not have a unique solution, the
bilevel problem (1) and (2) is ill-posed. This am-
biguity is expressed by the quotation marks in (1a).
To overcome this issue, it is common to pursue either
an optimistic or a pessimistic approach to bilevel op-
timization; see, e.g., Dempe [23]. In the optimistic
setting, the leader chooses the follower’s response
among multiple optimal solutions of the lower-level
problem such that it favors the leader’s objective
function value. Hence, the leader also minimizes
her1 objective in the y variables, i.e., we consider
the problem

min
x∈X̄

min
y∈S(x)

F (x, y) (3)

with X̄ := {x ∈ X : G(x) ≥ 0} and G : Rnx → Rm.
Here and in what follows, we focus on the setting

1Throughout this article, we use “her” for the leader and
“his” for the follower.
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without coupling constraints, i.e., without upper-
level constraints that depend on the variables y. In
the pessimistic setting, the leader anticipates that,
among multiple optimal solutions of the follower, the
worst possible response with respect to the upper-
level objective function will be chosen by the fol-
lower. Thus, one studies the problem

min
x∈X̄

max
y∈S(x)

F (x, y).

In this article, we focus on bilevel problems in the
above forms which are additionally affected by data
uncertainty.

2.1 Data Uncertainty
Data uncertainty arises when some of the players
only have access to inaccurate or incomplete data. In
robust optimization, it is assumed that these uncer-
tainties take values in a given, and usually compact,
uncertainty set U . The uncertainty sets are typi-
cally modeled using boxes, polyhedra, ellipsoids, or
cones; see, e.g., Bertsimas, Brown, and Caramanis
[9], Ben-Tal and Nemirovski [8], Ben-Tal et al. [7],
Ben-Tal, El Ghaoui, and Nemirovski [6], and Soyster
[35]. In the context of single-level robust optimiza-
tion, there are two possibilities to hedge against data
uncertainty.

First, assuming that the coefficients of the objec-
tive function are uncertain, one searches for a so-
lution that is optimal for the worst-case realization
of the uncertain parameters. The problem can be
modeled as

min
x∈X̄

max
u∈U

F (x, u), (4)

where the objective function F : Rnx × Rnu → R is
continuous and the sets U ⊆ Rnu and X̄ are defined
as above.

Second, in the case that the uncertainty affects the
coefficients of the constraints, one is interested in a
solution that is feasible for all possible realizations
of the uncertainty. This problem can be stated as

min
x∈X

F (x) s.t. G(x, u) ≥ 0 for all u ∈ U , (5)

where both the objective function F : Rnx → R
and the constraint function G : Rnx × Rnu → Rm

are continuous. Problem (5) can be reformulated
as

min
x∈X

F (x) s.t. min {G(x, u) : u ∈ U} ≥ 0. (6)

In particular, Problem (4) can be restated as an in-
stance of Problem (6) using an epigraph reformula-
tion, i.e.,

min
x∈X̄,t∈R

t s.t. t ≥ max {F (x, u) : u ∈ U} .

Note that in the two settings discussed so far, a
single decision maker has to take a here-and-now de-
cision before the uncertainty is revealed. In bilevel
optimization, however, there are two different tim-
ings that are possible—one in which the uncertainty
is realized after the follower makes his decision, and
one in which the uncertainty is realized before the
follower makes his decision.

Here-and-Now Follower

In the here-and-now setting, both the leader and the
follower have to make their decisions before the un-
certainty is revealed, i.e., one considers the timing

leader x ↷ follower y = y(x) ↷ uncertainty u. (7)

This means that the leader anticipates an optimal
response of the follower who hedges against data
uncertainty. Hence, the lower-level problem is an x-
parameterized problem in which we can embed any
of the concepts known for single-level optimization
under uncertainty. For instance, if only the lower-
level objective function is uncertain and the follower
is assumed to behave in an optimistic way, we are
solving Problem (3) with

S(x) := arg miny′∈Y

{
max
u∈U

f(x, u, y′) : g(x, y′) ≥ 0

}
.

Wait-and-See Follower

In the wait-and-see setting, the leader first makes
a here-and-now decision, i.e., without knowing the
realization of uncertainty. Then, the uncertainty is
revealed and, finally, the follower decides in a wait-
and-see fashion, taking the leader’s decision as well
as the realization of the uncertainty into account.
Hence, one considers the timing

leader x ↷ uncertainty u ↷ follower y = y(x, u).
(8)

This means that the leader does not have full knowl-
edge about the lower-level problem. Thus, she wants
to hedge against the worst-case reaction of the fol-
lower. Here, “worst-case” may not only involve the
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robustness of the leader with respect to lower-level
data uncertainty but also her conservatism regarding
the cooperation of the follower. To protect against
the worst-case realization of the uncertainties with
respect to the leader’s objective function, we con-
sider the problem

“min
x∈X̄

max
u∈U

” F (x, y) s.t. y ∈ S(x, u), (9)

where S(x, u) is the set of optimal solutions of
the (x, u)-parameterized problem

min
y∈Y

f(x, u, y) s.t. g(x, u, y) ≥ 0.

The quotation marks in (9) express the ill-posedness
of the bilevel problem in the case that the set S(x, u)
is not a singleton. Hence, one also needs to dis-
tinguish between the optimistic and the pessimistic
case in the robust setting. Indeed, both situations
can be motivated by practical applications. For in-
stance, the pessimistic robust bilevel problem ap-
pears when the leader wants to hedge against the
worst-case both with respect to lower-level data un-
certainty as well as with respect to the potentially
unknown level of cooperation of the follower. On the
other hand, there may also be situations in which
the follower still hedges against his uncertainties in
a robust way but, in the case of ambiguous optimal
solutions, acts in an optimistic way. This might be
the case in energy markets with sufficiently regulated
agents, where a strong level of regulation might lead
to an optimistic robust bilevel problem.

3 An Academic Example
Let us consider the linear bilevel problem taken from
Beck, Ljubić, and Schmidt [3] that is given by

“min
x∈R

” F (x, y) = x+ y (10a)

s.t. x− y ≥ −1, (10b)
3x+ y ≥ 3, (10c)
y ∈ S(x), (10d)

where S(x) denotes the set of optimal solutions of
the x-parameterized lower level

min
y∈R

f(x, y) = −0.1y (11a)

s.t. − 2x+ y ≥ −7, (11b)
− 3x− 2y ≥ −14, (11c)
0 ≤ y ≤ 2.5. (11d)

The problem is depicted in Figure 1 (left). The
upper- and lower-level constraints are represented
with dashed and solid lines, respectively. The op-
timal solution (x∗, y∗) = (1.5, 2.5) is the same for
both the optimistic and the pessimistic setting and
it is illustrated by the thick dot. Suppose now that
the lower-level objective function is uncertain. To
this end, we consider f̃(x, u, y) = (−0.1 + u)y and
assume that u only takes values in the uncertainty
set U = {u ∈ R : |u| ≤ 0.5}. In what follows, we dis-
tinguish between a follower taking a here-and-now or
a wait-and-see decision to illustrate how the consid-
ered timing may affect the solution of the problem.

3.1 Here-and-Now Follower
We first consider the timing in (7). The robustified
lower-level problem is thus given by

miny∈R maxu∈U f̃(x, u, y) = (−0.1 + u)y
s.t. (11b)–(11d).

Using classical techniques from robust optimization,
we obtain a modified gradient of the lower-level ob-
jective function, which is shown in Figure 1 (right).
The optimal solution (x∗, y∗) = (1, 0) of this prob-
lem is represented by the thick dot. In particular,
there is a unique lower-level response for every fea-
sible x, which is why we do not need to distinguish
between the optimistic and the pessimistic case.

3.2 Wait-and-See Follower
We now consider the timing in (8), i.e., the overall
robustified bilevel problem reads

“min
x∈R

max
u∈U

” F (x, y) s.t. (10b)–(10c), y ∈ S(x, u),

where S(x, u) is the set of optimal solutions of the
(x, u)-parameterized lower level

min
y∈R

f̃(x, u, y) = (−0.1 + u)y s.t. (11b)–(11d).

To solve this problem, we need to distinguish the
following three cases.

i. −0.5 ≤ u < 0.1: This case corresponds to the
setting that is depicted in Figure 1 (left). The
optimal follower’s reaction is thus given by

y(x, u) =

{
2.5, x ≤ 3,

−1.5x+ 7, 3 ≤ x ≤ 4.
(12)

Note, however, that the bilevel problem is in-
feasible for x < 1.5. In particular, this means
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Figure 1: Both figures show the upper-level constraints (dashed blue lines), the lower-level constraints (solid black
and orange lines), the shared constraint set (gray area), and the bilevel feasible set (solid orange lines) of the bilevel
problem (10) and (11). The deterministic variant of the problem is depicted on the left and the variant with a
here-and-now follower is given on the right.

that the robust optimal leader’s decision x∗ = 1
for the case with a here-and-now follower is no
longer bilevel feasible if the follower decides in
a wait-and-see fashion.

ii. u = 0.1: Any feasible decision of the follower,
i.e., any y ∈ R that satisfies (11b)–(11d), is opti-
mal for the x-parameterized lower level. Hence,
the distinction between an optimistic and a pes-
simistic follower is necessary. In the optimistic
setting, the follower would react with

y(x, u) =

{
0, x ≤ 3.5,

2x− 7, 3.5 ≤ x ≤ 4.
(13)

This corresponds to the setting that is depicted
in Figure 1 (right). A pessimistic follower, how-
ever, would make decisions according to (12).
Note that the bilevel problem with an optimistic
follower turns out to be infeasible for x < 1 and,
again, the problem is infeasible for x < 1.5 if a
pessimistic follower is considered.

iii. 0.1 < u ≤ 0.5: The optimal follower’s reaction
is again given by (13). Again, the overall bilevel
problem turns out to be infeasible for x < 1.

To determine an optimal solution of the bilevel
problem (10) and (11) with a wait-and-see follower,
we thus consider the worst-case realization of each of
the previous three cases w.r.t. the leader’s decision x.
Hence, we need to solve

min
x

F̂ (x) s.t. 1.5 ≤ x ≤ 4 (14)

with the piecewise-linear function

F̂ (x) =

{
x+ 2.5, 1.5 ≤ x ≤ 3,

−0.5x+ 7, 3 ≤ x ≤ 4.

In particular, the solution x∗ = 1.5 of Problem (14)
is an optimal decision of the leader in both the op-
timistic and the pessimistic setting. After observing
the realization of the uncertainty, the corresponding
response of the follower is then given by

y∗o(x
∗, u) =

{
2.5, −0.5 ≤ u < 0.1,

0, 0.1 ≤ u ≤ 0.5,

in the optimistic setting, whereas, for the pessimistic
case, we have

y∗p(x
∗, u) =

{
2.5, −0.5 ≤ u ≤ 0.1,

0, 0.1 < u ≤ 0.5.

Note that, if u ∈ [−0.5, 0.1) is realized, at the point
x∗ = 1.5, the deterministic solution (x∗, y(x∗)) and
the robust bilevel solutions (x∗, y(x∗, u)) coincide.
However, the optimal follower’s response y(x∗, u) in
the robust setting may change significantly for u ≥
0.1.

4 Selected Results from the Literature
The field of robust bilevel optimization is still in its
infancy. For a detailed discussion of existing mod-
eling and solution approaches, we refer to our re-
cent survey [3]. In deterministic bilevel optimiza-
tion, a standard solution approach is to reformulate
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the problem as a classical, i.e., single-level, problem.
This can be done, e.g., by replacing the lower-level
problem with its Karush–Kuhn–Tucker (KKT) con-
ditions [28]. The same holds true for robust bilevel
problems whenever the robust counterpart of the
lower-level problem can be reformulated as a de-
terministic problem for which the KKT conditions
are necessary and sufficient. However, these refor-
mulation techniques cannot be applied anymore if
discrete variables are introduced in the lower level.
Due to their intrinsic hardness, approaches for dis-
crete robust bilevel problems have not been thor-
oughly investigated until recently. In single-level
optimization, the knapsack problem is one of the
most thoroughly studied discrete optimization prob-
lem due to its relevance both in theory and practice;
see, e.g., Pisinger and Toth [34]. Bilevel knapsack
problems naturally extend their single-level counter-
parts so as to capture hierarchical and, in particu-
lar, competitive settings [19, 21, 24, 27, 26]. More-
over, the bilevel knapsack interdiction problem is
commonly used as a benchmark for testing bilevel
optimization solvers; see, e.g., DeNegre and Ralphs
[25] and Tang, Richard, and Smith [36]. It is thus
not surprising that bilevel knapsack problems are
also among the first discrete bilevel problems stud-
ied under uncertainty—both in terms of complexity
questions and solution approaches. The remainder
of this section is thus dedicated to a brief overview
of recent results from the literature for robust bilevel
knapsack problems.

4.1 Complexity Results for Robust Con-
tinuous Bilevel Knapsack Problems
with a Wait-and-See Follower

We start by considering the robust continuous bilevel
knapsack problem with an uncertain lower-level ob-
jective, i.e., we consider the problem

max
x∈[x−,x+]

min
c∈U,y∈Rn

d⊤y (15a)

s.t. y ∈ arg miny′{c⊤y′ :
a⊤y′ ≤ x, 0 ≤ y′ ≤ 1} (15b)

with x−, x+ ∈ R, x− ≤ x+, a, c, d ∈ Rn
≥0, and an

uncertainty set U ⊆ Rn. In this setting, the leader
first decides on the knapsack’s capacity x. Then,
the uncertainties regarding the lower-level objective
function coefficients are realized. Finally, the fol-
lower solves a knapsack problem according to the
realization of his own profits, which may differ from

those of the leader. Hence, the follower decides in
a wait-and-see fashion, i.e., the timing in (8) is con-
sidered. The leader’s aim is to choose the capac-
ity of the knapsack in such a way that her own
profit from the items packed by the follower is max-
imized. Whenever the follower’s choice of items is
not unique, the pessimistic approach is considered.
The deterministic variant of Problem (15) can be
solved in polynomial time, which makes it a good
starting point to address the question of how uncer-
tainties may affect the hardness of the underlying
bilevel problem.

Driven by this question, Buchheim and Henke
[15, 16] show that the complexity of Problem (15)
strongly depends on the considered type of the un-
certainty set. For discrete uncertainty sets as well as
for interval uncertainty under the independence as-
sumption, i.e., for the case in which the follower’s ob-
jective function coefficients independently take val-
ues in given intervals, Problem (15) remains solvable
in polynomial time. However, the problem becomes
NP-hard if the uncertainty set is a Cartesian prod-
uct of discrete sets. In particular, this result shows
that replacing the uncertainty set by its convex hull
may significantly change the problem, which is very
much in contrast to the situation in single-level ro-
bust optimization. NP-hardness is also shown for
the variants of the problem with polytope uncer-
tainty sets and uncertainty sets that are defined by
a p-norm with p ∈ [1,∞). In particular, for all NP-
hard variants of the problem, even the evaluation of
the leader’s objective function is NP-hard.

As a generalization of the aforementioned works,
Buchheim, Henke, and Hommelsheim [17] are con-
cerned with complexity questions for robust bilevel
combinatorial problems of the form

“max
x∈X

min
c∈U

” d⊤y (16a)

s.t. y ∈ arg miny′∈Rny {c⊤y′ :
By′ ≤ Ax+ b}. (16b)

with X ⊆ {0, 1}nx , A ∈ Rm×nx , B ∈ Rm×ny ,
c, d ∈ Rny , and b ∈ Rm. Again, it is assumed that
the lower-level objective function coefficients are un-
certain, that the uncertainties take values in a given
uncertainty set U ⊆ Rny , and that the follower de-
cides in a wait-and-see fashion. As before, the quo-
tation marks in (16a) express the ambiguity in the
case that the lower level does not have a unique so-
lution. The deterministic variant of Problem (16) is
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known to be NP-easy.2 However, it is shown that in-
terval uncertainty renders Problem (16) significantly
harder than the consideration of discrete uncertainty
sets. More precisely, the robust counterpart can
be ΣP

2 -hard3 for interval uncertainty under the in-
dependence assumption, whereas it can be NP-hard
for uncertainty sets U with |U| = 2 and strongly
NP-hard for general discrete uncertainty sets. In
particular, it is shown that replacing the discrete
uncertainty set by its convex hull may increase the
complexity of the problem at hand, which is in line
with the results in Buchheim and Henke [15, 16].

4.2 Solution Approaches for the Bilevel
Knapsack Interdiction Problem with
a Here-and-Now Follower

Beck, Ljubić, and Schmidt [4] study discrete linear
min-max problems with uncertainties regarding the
lower-level objective function coefficients. In con-
trast to the aforementioned works, which all follow
the notion of strict robustness, the authors consider
a Γ-robust approach [10, 11]. The problem under
consideration thus reads

min
x

c⊤x+ d⊤y (17a)

s.t. Ax ≥ a, x ∈ X ⊆ Znx , (17b)

y ∈ arg miny′∈Y (x){d⊤y′−

max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆diy
′
i}, (17c)

where Γ ∈ [ny] := {1, . . . , ny} and Y (x) ⊆ Zny

+ de-
notes the lower-level feasible set. Here, the timing
in (7) is considered, i.e., both the leader and the
follower decide before the uncertainty realizes. The
authors present two approaches to reformulate Prob-
lem (17). The first approach is based on an extended
formulation, whereas the second one exploits the fact
that Problem (17) can be interpreted as a single-
leader multi-follower problem with independent fol-
lowers. Based on these reformulations, the authors
propose generic branch-and-cut frameworks to solve
the problem. Moreover, it is shown that the same
techniques can also be used for the case in which
uncertainties only arise in a single packing-type con-
straint in the lower level subproblem. To assess the

2A decision problem is NP-easy if it can be polynomially
reduced to an NP-complete decision problem [17].

3This class contains those problems that can be solved in
nondeterministic polynomial time, provided that there exists
an oracle that solves problems that are in NP in constant
time.

applicability of the proposed branch-and-cut meth-
ods, the authors focus on the Γ-robust knapsack in-
terdiction problem [20]. In this setting, both players
share a common set of items and the leader has the
ability to influence the follower’s decision by pro-
hibiting the usage of certain items by the follower.
The authors derive problem-tailored cuts and per-
form a computational study on 200 robustified knap-
sack interdiction instances with up to 55 items, i.e.,
with up to 55 variables on both the upper and the
lower level.

5 A First Glimpse at Decision Uncer-
tainty

Although being subject to data uncertainty, both
decision makers in the bilevel problem are assumed
to make perfectly rational decisions in the sense
that they can perfectly anticipate or observe the
other’s decision, and that they can solve their prob-
lem to global optimality. In decision making the-
ory, however, it is well known that these assump-
tions regarding perfect information and rationality
are rarely satisfied in a real-world context. Luck-
ily, bilevel optimization under uncertainty allows for
the relaxation of these assumptions in multiple ways.
Throughout this article, we assumed that the major
source of uncertainty stems from unknown or noisy
input data. However, bilevel optimization involves
(at least) two decision makers and, hence, other un-
certainties in the decision making process are also
possible. One such uncertainty is decision uncer-
tainty in which, e.g., the leader is not sure about the
reaction of the follower (for instance if the follower
does not necessarily choose an optimal solution) or
in which the follower is not sure about the observed
leader’s decision. We will not go into details here,
but want to give a few pointers to the relevant lit-
erature that covers such aspects. If the leader is
uncertain about her anticipation of the follower’s op-
timal reaction and, thus, may want to hedge against
sub-optimal follower reactions, the resulting setup
can be modeled using so-called near-optimal robust
bilevel models; see, e.g., Besançon, Anjos, and Brot-
corne [12]. As an extreme case of the former as-
pect it may be the case that the upper-level player
knows that the follower will play against her. This
is the setting of a pessimistic bilevel optimization
problem, which is also naturally connected to the
field of robust optimization; see, e.g., Wiesemann et
al. [40]. However, if the level of cooperation or con-
frontation of the follower is not known, this leads
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to intermediate cases in between the optimistic and
the pessimistic case; see, e.g., Aboussoror and Lori-
dan [1] and Mallozzi and Morgan [33]. Moreover, in
many situations it is not possible for the follower to
observe perfectly the optimal decision of the leader
and the follower thus may want to hedge against
all possible leader decisions in some uncertainty set
around the observation. Such settings are tackled
in, e.g., Bagwell [2], van Damme and Hurkens [37],
and Beck and Schmidt [5]. Finally, even if all data
and the rational reaction of the follower is known
and even if the leader can, in principle, fully antici-
pate the (globally) optimal reaction of the follower,
it might still be the case that limited intellectual
or computational resources render it impossible for
the follower to take a globally optimal decision. In
such situations, a follower might resort to heuristic
approaches and the leader may be uncertain with re-
spect to which heuristic is used. For a good primer
in this context, we refer to the recent paper by Zare,
Prokopyev, and Sauré [41].

The above list is by far not comprehensive. A
much more detailed discussion of these and other as-
pects can be found in our recent survey [3]. However,
it is hopefully clear now how much more diverse the
sources of uncertainty can be in bilevel optimization
as compared to single-level optimization. Hence, we
expect a lot of research in this area in future years.
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1 Introduction
This short article is an abridged version of a pa-
per that we recently posted on the arXiv, offering
a different viewpoint and hopefully a much simpler
overview.

We study algorithms for the following semidefinite
optimization problem:

max Tr (CX)

s.t. diag(X) = e, X ⪰ 0,
(1)

where e is the all-ones vector, C ∈ Sn, Sn is the
set of n × n symmetric matrices, and the nota-
tion X ⪰ 0 means that X is positive semidefinite.
This problem is the natural semidefinite program-
ming (SDP) relaxation of a so-called quadratic un-
constrained binary optimization (QUBO) problem
in its Ising model form:

max x⊤Cx

s.t. x ∈ {−1, 1}n.
(2)

To go from (2) to (1), we rewrite the objective func-
tion of (2) as Tr

(
x⊤Cx

)
= Tr

(
xx⊤C

)
, and then

replace xx⊤ with a matrix X satisfying the con-
straints diag(X) = e,X ⪰ 0, and rank(X) = 1. This
is a nonconvex problem due to the rank constraint;
dropping it yields the (convex) relaxation (1). Note
that (2) can easily be cast as a problem with binary
variables after a linear transformation of the decision
variables.

We show how to solve problem (1) on a quan-
tum computer, up to a given optimality tolerance ε,
faster than any known classical algorithm. In the
following, we use the notation Õ (·) to represent the
usual complexity-theoretic notation O (·), with the
additional feature that all terms that are polyloga-
rithmic in the size of the input are suppressed. Note
that this can suppress polylogarithmic dependence
in potentially different parameters depending on the
context (e.g., problem size n, precision ε, and min-
imum probability of success p); however, this sup-
pression greatly simplifies the exposition, since keep-
ing track of the polylogarithmic terms would be te-
dious. The input to the problem consists of a binary
description of the matrix C, the required precision ε,
and a minimum probability of success p for nondeter-
ministic algorithms (such as quantum algorithms).

There are many algorithms to solve general SDPs,
and of course they can be applied to problem (1). A
full literature review would involve many intricacies
and it would be space-consuming, hence we only give
a brief summary here, referring to the full version of
our work [5] for more details. Interior point meth-
ods (IPMs) exhibit both theoretical and practical
efficiency, and can be used to solve SDPs [12]. The
matrix multiplicative weights update (MWU) algo-
rithm has also been applied to SDP [13]. There are
quantum versions of both approaches. The quan-
tum implementation of an IPM for SDPs achieves
faster running time in n, but so far has worse de-
pendence on other numerical parameters and does
not yield a speedup in general [4]. The quantum
MWU algorithms achieve sublinear running time in
n and the number of constraints, but they pay the
price of a much heavier dependence on 1/ε and the
size of the solutions R (defined as an appropriate
norm of the optimal solution): currently, the depen-
dence on these last two parameters is Õ

(
(R/ε)5

)
[7, 2, 1]. Our work improves on the Hamiltonian
Updates algorithm [6] by exponentially reducing its
running time dependence on 1/ε. As a consequence,
we obtain a classical algorithm that solves (1) in ma-
trix multiplication time Õ (nω) (ω is the exponent of
matrix multiplication, for which the best known up-
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per bound is currently ≈ 2.373 [20]) and a quantum
algorithm — a direct quantum implementation of
our classical algorithm — that solves the problem in
time Õ

(
n1.5 + ns

)
, where s is the maximum num-

ber of nonzero elements in each row of C: this is
subquadratic and represents an end-to-end speedup
compared to any known classical algorithm for this
problem. The rest of this article is devoted to ex-
plaining how we achieve this result. We often omit
details or perform simplifications for ease of exposi-
tion: for a rigorous discussion with all the necessary
details, we again refer to the full version of our paper
[5].

Several important remarks are in order. First,
our classical and quantum algorithms do not solve
(1) directly: rather, they solve a renormalized ver-
sion of (1) where every constraint is relaxed by ε
(to be stated explicitly in (3)). In turn, a round-
ing procedure can be used to go from a solution of
the relaxed problem to an exactly-feasible solution
with roughly the same error. Classically, fast IPMs
that can solve (1) in Õ

(
nω+0.5

)
time have been pro-

posed [12]. However, these algorithms have so far re-
mained a purely-theoretical development: practical
IPMs use slower algorithms [18]. Our classical algo-
rithm for (1) is simple to implement, although we do
not claim that it would beat IPMs on the problem
– we have not investigated this aspect. The MWU
algorithm of [13] has better dependence on ns – only
linear – but its 1/ε dependence is poor. In the quan-
tum world, previous algorithms for (1) have amazing
dependence on n, but horrible dependence on 1/ε
and other numerical parameters, making them very
slow in virtually every optimization setting where
the data is classically specified, such as the setting
studied here. We eliminate this issue while paying
only a small increase in the dependence on n, using
a technique known as iterative refinement in the op-
timization literature, see e.g., [8, 11]. However, the
resulting quantum speedup relies on having access
to quantum RAM (QRAM), a quantum-accessible
form of classical storage. QRAM access is a stan-
dard assumption in the quantum optimization liter-
ature, but it is a strong input model and engineering
QRAM is considered to be a very difficult task that
is unlikely to happen soon, although there are no
known theoretical obstacles for its construction 1. If
QRAM is not available, our quantum algorithm is at

1See e.g. the talk by Ronald de Wolf at the Simons In-
stitute on Computing: https://www.youtube.com/watch?v=
1-2LIopvNIk

least a factor n slower, and perhaps more, depending
on how the matrix C is specified. In other words,
the quantum speedup depends on an input model
that may be difficult to implement in practice. Still,
we think that our classical algorithm may be inter-
esting in its own right, and we are thrilled about the
possibility of a quantum speedup for a classical op-
timization problem. Note that to prove a separation
between classical and quantum algorithms we would
have to show that all classical algorithms are slower
than our Õ

(
n1.5 + ns

)
quantum algorithm, and we

do not have such a proof: thus, better classical al-
gorithms are not ruled out.

2 Classical Hamiltonian Updates
The classical algorithm that we present is based on
the work of [6], which is itself a tailored version of
mirror descent with the matrix logarithm as the mir-
ror map [19]. Thus we start by giving an overview of
their approach. In mirror descent, we have access to
a surjective, strictly convex and differentiable mir-
ror map that transforms a primal space into a dual
space. We then follow a modification of standard
gradient descent: rather than taking steps along the
(negative of the) gradient in primal space, we first
map to the dual space via the mirror map, take a
gradient step in the dual space, and then map back
to the primal space using the fact that the mirror
map is surjective. If this procedure brings us out-
side the primal feasible set, we perform a projection
to recover feasibility.

Let us more properly define the problem that we
solve. Starting from (1), assume that C is normal-
ized so that ∥C∥F = 1. Note that normalizing the
objective function generally means that we need to
increase the precision of the solution by the normal-
ization factor, but this is not an issue in our case be-
cause the running time dependence of our algorithm
on the precision is merely polylogarithmic. Then,
we rescale X by a factor 1/n, thereby requiring that
diag(X) = e/n, and then transform the problem into
a feasibility problem that tests if a feasible solution
with value at least γ exists. Finally, we relax each
constraint in the decision problem by ε to obtain

Tr (CX) ≥ γ − ε∑
j∈[n]

∣∣∣∣Xjj −
1

n

∣∣∣∣ ≤ ε

Tr (X) = 1, X ⪰ 0.

(3)

If we can solve the feasibility problem (3), we can ap-

https://www.youtube.com/watch?v=1-2LIopvNIk
https://www.youtube.com/watch?v=1-2LIopvNIk
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proximately determine the optimum by performing
a binary search on γ.

2.1 Basic algorithm
The specific algorithm of [6] is an instance of matrix-
exponentiated gradient updates as presented in [19].
It works as follows. We consider candidate solu-
tions of the form X(k) = exp(H(k))/Tr

(
exp(H(k))

)
,

where H(k) ∈ Sn and initially H(0) is the all-zero
matrix; these H matrices are the Hamiltonians that
give the name to the algorithm. We minimize the
objective function

Loss(X) = max{0, γ − ε− Tr (CX)}
+
∑

j∈[n] max{0, |Xjj − 1
n | − ε}.

Loss(X) is a summation of hinge-loss-like terms,
corresponding to the constraints of (3). Loss(X)
takes the value 0 at feasible solutions for (3).
Loss(X) is not differentiable, but its subgradients
are readily computed as

−CδTr(CX)<γ−ε+∑
j∈[n]

(
ejjδXjj− 1

n>ε − ejjδ 1
n−Xjj>ε

)
, (4)

where δx is the indicator function δx = 1 if x is
true, 0 otherwise, and ejj is the matrix that is 1 in
position (j, j) and 0 everywhere else.

Now we apply the mirror descent framework with
the matrix logarithm as the mirror function. We first
apply the matrix logarithm to the current solution
X(k): this is just H(k), up to normalization. We then
add a multiple of the subgradient, and finally map
back to the primal space by applying the inverse of
the matrix logarithm, i.e., the matrix exponential.
This always yields a positive definite matrix since
we are taking the matrix exponential of a symmetric
matrix; however, it may not yield a trace-normalized
matrix. Hence, we renormalize by dividing by the
trace: this is equivalent to a projection step onto the
set of unit-trace matrices. To summarize, in every
iteration we update the solution as

X(k+1) =
exp

(
logX(k) + ϵ

16∇Loss(X(k))
)

Tr
(
exp

(
logX(k) + ϵ

16∇Loss(X(k))
)) ,

see [6, 19] for details; here, ϵ
16 is just a particular

step size. In fact, rather than working with logX(k)

we simply work with H(k) and accumulate gradient
steps onto H(k) directly.

Theorem 1 ([6]). The algorithm described above,
called Hamiltonian Updates, converges to a solution
of (3) in Õ

(
1
ε2

)
iterations, or else proves that no

feasible solution exists.

The proof is based on a potential function argu-
ment using the relative entropy between the initial
solution and the optimal solution, showing that it is
bounded and decreases by a certain amount in ev-
ery step. However, a solution to (3) is not necessarily
feasible for (1). To guarantee that we can round to a
feasible solution for (1), we need to solve (3) to high
inverse precision O

(
1/ε4

)
.

Theorem 2 ([6]). Let X∗ be a solution to (3)
with inverse precision 1/ε4. Then nX∗ is at most
O (εn) away (in trace distance) from a feasible solu-
tion of (1) that has objective function value at least
γ −O (nε), and there is a constructive procedure to
obtain such feasible solution in time O

(
n2

)
.

In each iteration of the algorithm we need to com-
pute a matrix exponential up to some level of preci-
sion, which can be done with matrix multiplication
simply by truncating the series defining the matrix
exponential. Putting everything together, and omit-
ting some details, we obtain a classical algorithm
that approximately solves (1) in time Õ

(
nω

ε12

)
. This

algorithm is impractical due to the term 1/ε12. We
now show how to improve this.

2.2 Improvement via iterative refinement
Suppose we solve problem (3) to some precision ε.
Let X̂ be the approximate solution. Define

η =
1

max
{
γ − Tr

(
CX̂

)
,
∥∥∥X̂ − n−1I

∥∥∥
Tr

} ≥ 1

ε
,

i.e., the reciprocal of the maximum constraint vio-
lation of the current solution (the second term in
the max is just a rewriting of the constraint on the
diagonal elements in (3)). Define Q as the n × n
matrix with 1 in every off-diagonal element, and
Qjj = sign( 1n − X̂jj) on the diagonal. Let ◦ denote
the Hadamard (i.e., element-wise) product. Suppose
we find X ′ satisfying

Tr (C(Q ◦X ′)) ≥ η(γ − Tr
(
CX̂

)
)− ε∑

j∈[n]

∣∣∣∣X ′
jj − η|X̂jj −

1

n
|
∣∣∣∣ ≤ ε

Tr (X ′) = 1, X ⪰ 0.

(5)
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Then X = Q◦X′

η + X̂ satisfies∑
j∈[n]

∣∣∣∣X − 1

n

∣∣∣∣ =
∑
j∈[n]

∣∣∣∣1η (Q ◦X ′)jj + X̂jj −
1

n

∣∣∣∣ =
∑
j∈[n]

∣∣∣∣1ηX ′
jj − |X̂jj −

1

n
|
∣∣∣∣ ≤

1

η

∑
j∈[n]

∣∣∣∣X ′
jj − η|X̂jj −

1

n
|
∣∣∣∣ ≤ ε

η
≤ ε2

because 1/η ≤ ε. Regarding the objective function,
we have

Tr (CX) = Tr

(
C(

Q ◦X ′

η
+ X̂)

)
=

1

η
Tr (C(Q ◦X ′)) + Tr

(
CX̂

)
≥ γ − ε

η
≥ γ − ε2.

Thus, if can determine X ′ satisfying (5), we can con-
struct a new solution X whose maximum constraint
violation is reduced by a factor 1/ε. We call this a
refinement iteration. Intuitively, we are expressing
the problem of obtaining an ε2-precise solution to
(3) in terms of computing an adjustment X ′ to our
previous ε-precise solution X̂. Since X̂ is already
close to the feasible region (at most ε away), we can
“zoom in” and increase the problem data by a factor
η ≈ 1/ε. This gives the update rule X = Q◦X′

η + X̂.
This type of approach is used to determine high-
precision solutions in linear programming [8, 11] and
more generally to find accurate solutions to systems
of linear equations [17].

It is not difficult to show by induction that this
process can be iterated: in k iterations of this
scheme, we can reduce the total constraint violation
to εk. This is exponentially fast: for every given
ε, let ζ = 10−3 be a constant precision (any small
constant would do). If we perform k refinement it-
erations, each with constant precision ζ, then we
obtain a solution with precision ζk = 10−3k, thus
k = O

(
log 1

ε

)
iterations will suffice. Each refinement

iteration solves a problem of the form (5), where we
set the precision to ζ. We can apply a tailored ver-
sion of Hamiltonian Updates to this problem, as it is
only a small modification from (3): the only changes
are the “target values” for each diagonal term, the
bound on the objective function value, and the ma-
trix Q that determines the sign of the diagonal el-
ements. Taking these changes into account is not

complicated; the expression for the subgradient (4)
changes a bit, but we do not explore it in detail for
ease of exposition. Because each refinement itera-
tion is executed with constant precision ζ, its run-
ning time is Õ (nω). In total, we need to perform
O
(
log 1

ε

)
iterations of the refinement scheme, so the

total complexity to obtain an ε-precise solution to
(3) is Õ (nω).

To keep the discussion simple we have skipped
several details. As mentioned, we need to modify
Hamiltonian Updates because (5) is more general
than (3). More importantly, the updated solution
X = Q◦X′

η + X̂ may not be positive semidefinite:
X,X ′ ⪰ 0 is not a sufficient condition for Q◦X ′ ⪰ 0.
To resolve this issue, we show that the eigenvalues
of the solution following the necessary number of
refinement iterations are only mildly negative, i.e.,
they satisfy ≥ −δ for some small constant δ that
depends only on the constant ζ. Then adding δ to
the diagonal of the final solution, and renormaliz-
ing to obtain a matrix with unit trace, suffices to
restore positive semidefiniteness. To show that this
does not affect the precision of our solution by more
than a constant factor, we note that a spectrum shift
followed by renormalization of the trace helps in sat-
isfying the constraint

∥∥X − n−1I
∥∥
Tr

by making all
diagonal elements more similar to each other. Fur-
thermore, the objective function value decrease too
much because the solution before the spectrum shift
was already required to be close to n−1I in trace
norm, and the objective function changes slowly
since ∥C∥F ≤ 1.

3 Quantum Hamiltonian Updates
This algorithm admits a quantum version in a very
natural manner. The implementation on a quan-
tum computer is based on working with Gibbs states
to represent positive definite matrices. A Gibbs
state is a mixed state, i.e., a probabilistic mix-
ture of pure quantum states, and it is of the form
exp(H)/Tr (exp(H)) for some Hamiltonian H ∈ Sn.

We give a brief overview of the model of com-
putation for quantum computers, in particular the
circuit model with QRAM, for readers that may not
be familiar with some of these concepts. For more
detailed tutorials, we refer to [16, 15]. In the cir-
cuit model, the quantum computer has a state that
evolves by applying gates. Gates are represented
by unitary matrices, and their effect on the quan-
tum state can be understood via the standard rules
of matrix multiplication and tensor products. The
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only way to obtain information on the quantum state
is to perform a special operation called a measure-
ment: each q-qubit quantum state induces a proba-
bility distribution over q-digit binary strings, and a
measurement takes a sample from this distribution.
For every classical Boolean circuit, there is a quan-
tum circuit that computes the same function with
at most polynomial overhead. QRAM is then the
quantum equivalent of classical RAM: RAM allows
a classical circuit to read from memory in O (1) time,
and QRAM allows a quantum circuit to read from
memory in O (1) time. When discussing the com-
plexity in the circuit model with QRAM, we simply
indicate the number of QRAM accesses, with the
understanding that the total number of additional
operations (i.e., gates) is at most a polylogarithmic
factor larger than the number of QRAM accesses.
Thus, this gives a fair indication of the “length” of
the circuit.

Gibbs states can be constructed on a quantum
computer in the framework of block-encodings, fol-
lowing the seminal work [9, 10, 3]; the idea of us-
ing Gibbs states in SDP was first explored in [7,
2]. A block-encoding of a matrix A is simply a
quantum circuit whose action on the quantum state,
when projected onto a particular subspace, is ex-
actly A. Thus, a block-encoding is a natural way of
encoding matrices on a quantum computer. Since
all quantum circuits are unitary operations, A may
need to be scaled down by some factor α before it
can be embedded into a quantum circuit. Given a
block-encoding for a (possibly scaled) Hamiltonian
H/α ∈ Sn, we can implement a state close to the
Gibbs state exp(H)/Tr (exp(H)) with only Õ (α

√
n)

applications of the circuit that constructs the block-
encoding [3]. Note that this a large advantage over
a classical computer, where matrix exponentials are
expensive to compute.

The quantum Hamiltonian Updates algorithm for
(3) was introduced by [6]. We follow the same
scheme as the classical Hamiltonian Updates de-
scribed above: we run several refinement iterations,
where each refinement iteration needs to solve a
problem of the form (5) (rather than (3)) and is
solved to a fixed precision ζ. Let us analyze the cost
of constructing the Gibbs states corresponding to
the solutions X(k) = exp(H(k))/Tr

(
exp(H(k))

)
ex-

plored in the course of a single refinement iteration.
The Hamiltonian H(k) is obtained through the sub-
gradient update (4). Note that this yields a Hamil-
tonian that is a summation of two properly weighted

terms: C, and a diagonal matrix D. Construct-
ing a block-encoding of such a Hamiltonian in the
QRAM model is straightforward, using techniques
from [9, 10, 3]. Only a constant subnormalization α
is necessary, because the Hamiltonian is a sum of two
terms and each term is already nicely scaled. Thus,
constructing X(k) requires only Õ (

√
n) QRAM ac-

cesses. We then need to compute the subgradient
(4). For this, we must be able to determine the con-
ditions in the indicator functions appearing in (4).
Let us analyze these conditions.

• Tr
(
CX(k)

)
< γ − ζ: this can be tested with

a trace estimator for CX(k) with error at most
ζ/2, which is easy to construct because we know
how to construct X(k) and a block-encoding for
C; see [3] for details. The overhead for this step
is only constant, because we need an estimation
to constant precision ζ/2.

• X
(k)
jj − 1

n > ζ or 1
n−X

(k)
jj > ζ: this can be tested

by estimating X
(k)
jj with error at most ζ/2. As

it turns out, the diagonal elements X
(k)
jj corre-

spond precisely to the probability of observing
the binary string j when applying a measure-
ment onto the quantum state representing X(k).
Thus, we just estimate all these probabilities
with repeated measurements, which takes Õ (n)
samples in total for constant precision ζ/2.

The most expensive step is testing the second condi-
tion above: it requires Õ (n) samples, and each sam-
ple comes from the state representing X(k), hence it
requires Õ (

√
n) QRAM accesses. The total cost of

this step, then, is Õ
(
n1.5

)
. In the same way as for

the classical Hamiltonian Updates algorithm, once
we know the complexity of a single refinement iter-
ation for constant precision we immediately derive
the final complexity of the algorithm, as we only
need O

(
log 1

ε

)
refinement iterations to solve (3) to

precision ε. It follows that we have an algorithm
that runs in Õ

(
n1.5

)
time in the QRAM model, as

desired. In addition to the quantum running time,
some classical operations are necessary to perform
normalizations and to update the data structures at
each iteration: the total cost of these classical opera-
tions is O (ns), i.e., the number of nonzero elements
of C.

Several important remarks are in order. Just as
in the classical case, we need a small spectrum shift
to restore positive semidefiniteness of the final solu-
tion obtained by accumulating the solutions to all
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the refinement iterations: this does not affect the
complexity of the algorithm. In the same manner,
our algorithm solves (3), rather than (1). This is the
same as in the classical case, see Theorem 2, but it
is complicated by the fact that the quantum algo-
rithm does not output a classical description of the
final solution X∗: we only have an implicit repre-
sentation of X∗ as a quantum state. However, we
could obtain the classical description of X∗ if de-
sired (at additional cost), or we can use the implicit
representation to efficiently compute properties of
the solution Tr (AX∗) for some matrices of interest
A. This type of trade-off is expected: our algorithm
runs in time Õ

(
n1.5

)
, which is sublinear in the ma-

trix size n2, therefore we cannot hope to output a
full description of the solution so quickly. Another
important observation is that we do not know how
to obtain the same running time without QRAM.
Perhaps the most natural QRAM-free model is the
one where we assume that there is an efficient algo-
rithm to describe the entries of C (i.e., the location
and value of the nonzero elements). The algorithm
can easily be adapted to this case, but its cost in-
creases: first, the construction for Gibbs states is
a factor O (

√
s) more expensive because of the cost

of computing the matrix exponential in the QRAM-
free input model [14]; second, the block-encoding of
the diagonal matrix D that appears in the Hamil-
tonian requires Õ (n) many gates. Thus, the overall
algorithm is at least a factor Õ (n

√
s) slower, leading

to a much-less-interesting Õ
(
n2.5

√
s
)

running time.
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Bulletin
Email items to siagoptnews@lists.mcs.anl.gov for
consideration in the bulletin of forthcoming issues.

Event Announcements
SIAM Conference
on Optimization
May 31 – June 3, 2023
Seattle, Washington, US

This is the conference of the SIAM Activity Group
on Optimization. This conference is co-located with
SIAM Conference on Applied and Computational
Discrete Algorithms (ACDA23).

The SIAM Conference on Optimization will fea-
ture the latest research in theory, algorithms, soft-
ware and applications for optimization problems.
The conference brings together mathematicians, op-
erations researchers, computer scientists, engineers,
software developers and practitioners, thus provid-
ing an ideal environment to share new ideas and im-
portant problems among specialists and users of op-
timization in academia, government, and industry.

The pre-registration deadline is May 3, 2023.
There are also Student and Early Career travel
awards, whose deadline is February 28, 2023.

URL: https://www.siam.org/conferences/cm/
conference/op23

IFORS
July 10 to 14, 2023
Santiago, Chile

The 23rd Conference of the International Feder-
ation of Operational Research Societies will bring
together academicians, practitioners, and experts in
the field of Management Science from more than
60 countries and to contribute to its development
through mutual academic and information exchange.

Since its inaugural meeting in the United King-
dom in 1957, this conference has become a large
international academic conference involving more
than 2,000 professionals from academia and industry
alike.

The deadline for abstract submission is March
15th, 2023, while April 25th, 2023 is the early regis-
tration deadline and May 10th, 2023 is the deadline
for the final registration.

URL: https://ifors2023.com

Books
Maximum-Entropy Sampling:
Algorithms and Application
By Marcia Fampa and Jon Lee
Publisher: Springer
ISBN: 978-3-031-13077-9
Published: October 2022
Series: Operations Research and Financial
Engineering (ORFE)
doi. org/ 10. 1007/ 978-3-031-13078-6

About the book: This monograph presents a
comprehensive treatment of the maximum-entropy
sampling problem (MESP), which is a fascinating
topic at the intersection of mathematical optimiza-
tion and data science. The text situates MESP in
information theory, as the algorithmic problem of
calculating a sub-vector of pre-specificed size from a
multivariate Gaussian random vector, so as to max-
imize Shannon’s differential entropy. The text col-
lects and expands on state-of-the-art algorithms for
MESP, and addresses its application in the field of
environmental monitoring. While MESP is a cen-
tral optimization problem in the theory of statistical
designs (particularly in the area of spatial monitor-
ing), this book largely focuses on the unique chal-
lenges of its algorithmic side. From the perspective
of mathematical-optimization methodology, MESP
is rather unique (a 0/1 nonlinear program having a
nonseparable objective function), and the algorith-
mic techniques employed are highly non-standard.
In particular, successful techniques come from sev-
eral disparate areas within the field of mathemat-
ical optimization; for example: convex optimiza-
tion and duality, semidefinite programming, La-
grangian relaxation, dynamic programming, approx-
imation algorithms, 0/1 optimization (e.g., branch-
and-bound), extended formulation, and many as-
pects of matrix theory.
Audience: The book is mainly aimed at graduate
students and researchers in mathematical optimiza-
tion and data analytics.

siagoptnews@lists.mcs.anl.gov
https://www.siam.org/conferences/cm/conference/op23
https://www.siam.org/conferences/cm/conference/op23
https://ifors2023.com
doi.org/10.1007/978-3-031-13078-6
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Chair’s Column
This is my last chairs column for the Views and

News as the Chair of the SIAG on Optimization
(SIAG/OPT). On behalf of the current SIAG/OPT
officers I would like to thank everyone for the sup-
port of SIAM and our interesting group through the
time of the pandemic. I am very pleased to announce
the new officers that have been elected to take over
in 2023! They are:

Chair: Luis Nunes Vicente

Vice Chair: Coralia Cartis

Program Director: Gabriele Eichfelder

Secretary: Juliane Mueller

I am thrilled to see that this SIAG will be in such
good hands for the next three years. Congratula-
tions to Luis, Cora, Gabriele and Juliane!

In the meantime, Jeff Linderoth, Coralia Cartis
and I are looking forward to the upcoming SIAM
Conference on Optimization. The conference will
be held in person, May 31st-June 3rd, 2023 in
the Sheraton Grand Seattle Hotel, in Seattle, WA
and it promises to be a great success. We have
received 335 minisymposia submissions and many
contributed talks. This is about 50% increase in
the number of submissions compared to the pre-
vious conferences. No doubt that we all missed
getting together in person and sharing our latest
ideas. On behalf of the conference co-chairs I would
like to thank the very active and successful or-
ganizing committee: Amitabh Basu (Johns Hop-
kins University), Güzin Bayraksan (Ohio State Uni-
versity), Stefania Bellavia (University of Florence),
Yuhong Dai (AMSS, Chinese Academy of Sciences),
Dmitriy Drusvyatskiy (University of Washington),
Dorit Hochbaum (University of California, Berke-
ley), Ruth Misener (Imperial College London), Ali
Pınar (Sandia National Laboratories), Fred Roosta
(University of Queensland), Johannes O. Royset
(Naval Postgraduate School), Mikhail V. Solodov
(IMPA–Instituto de Matemática Pura e Aplicada)
and Kim-Chuan Toh (National University of Sin-
gapore). The conference will be collocated with
the SIAM Conference on Applied and Computa-
tional Discrete Algorithms (ACDA23). A lot of in-
formation, such as registration deadline, is, or will

be, posted on its website https://www.siam.org/
conferences/cm/conference/op23.

Also, as always, see any updates related
to the SIAG on this GitHub site: https://
siagoptimization.github.io.

I would like to finish this column by wishing you
all a happy, productive and eventful 2023. Hope to
see you all in Seattle!
Katya Scheinberg, SIAG/OPT Chair
Cornell University, Ithaca, NY 18015-1582, USA
katyas@cornell.edu
https:/www.orie.cornell.edu/
faculty-directory/katya-scheinberg

Comments from the
Editors

Happy New Year, SIAG on Optimization! In this
slightly delayed December issue, we are pleased to
present two feature articles highlighting trends and
developments in our field.

In our first article, Yasmine Beck, Ivana Ljubić,
and Martin Schmidt discuss the intricacies of robust
bilevel optimization. Robust bilevel optimization is
a powerful modeling paradigm that is gaining in-
creasing traction, but involves many considerations
not found in other areas of optimization. In partic-
ular, within robust bilevel optimization, uncertainty
can appear not only in the problem data, but also
as a result of different assumptions of cooperation
between the leader and follower, the timing of when
the uncertainty is revealed to the follower, and per-
haps most exotically, uncertainty about what deci-
sions were made and whether or not both players
are rational. The authors provide an excellent ex-
plainer of these various different settings, and high-
light results throughout the literature on many of
these paradigms.

In our second article, Brandon Augustino, Gia-
como Nannicini, Tamás Terlaky, and Luis Zuluaga
provide insight into the world of quantum comput-
ing and how it could benefit optimization. In par-
ticular, they highlight from their own recent work a
mirror-descent-type algorithm (with bells and whis-
tles and iterative refinement!) for an SDP relaxation
of quadratic binary optimization problems. They
then demonstrate how, assuming access to a quan-
tum RAM model of computation, their proposed
method exhibits worst-case complexity significantly
faster than the current (classical) best-known com-
plexity.

https://www.siam.org/conferences/cm/conference/op23
https://www.siam.org/conferences/cm/conference/op23
https://siagoptimization.github.io
https://siagoptimization.github.io
katyas@cornell.edu
https:/www.orie.cornell.edu/faculty-directory/katya-scheinberg
https:/www.orie.cornell.edu/faculty-directory/katya-scheinberg
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All issues of Views and News are available
online at https://siagoptimization.github.io/
ViewsAndNews.

The SIAG on Optimization Views and News mail-
ing list, where editors can be reached for feedback, is
siagoptnews@lists.mcs.anl.gov. Suggestions for
new issues, comments, and papers are always wel-
come.
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