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In this short expository note, we describe a unified
algorithmic perspective on several classical prob-
lems which have traditionally been studied in dif-
ferent communities. This perspective views the
main characters—the problems of Optimal Trans-
port, Minimum Mean Cycle, Matrix Scaling, and
Matrix Balancing—through the same lens of opti-
mization problems over joint probability distributions
P (x, y) with constrained marginals. While this is
how Optimal Transport is typically introduced, this
lens is markedly less conventional for the other three
problems. This perspective leads to a simple and
unified framework spanning problem formulation, al-
gorithm development, and runtime analysis.

Some fragments of this story are classical—for
example, the approach for solving Optimal Trans-
port via the Sinkhorn algorithm for Matrix Scaling
dates back at least to the 1960s [58] and by now is
well-known in multiple communities spanning eco-
nomics, statistics, machine learning, operations re-
search, and scientific computing [51, 37, 47, 27].

Yet, the story described in this note was only re-
cently developed in full—for example, the use of
probabilistic inequalities to prove near-optimal run-
times [13, 14], and the parallels between Optimal
Transport and Minimum Mean Cycle which pro-
vide a framework for applying popular algorithmic
techniques for the former problem to the latter [11].
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Fixed marginals Symmetric marginals

Linear program Optimal Transport Minimum Mean Cycle

Entropic regularization Matrix Scaling Matrix Balancing

Polytope Transportation polytope Circulation polytope

Simple algorithm Sinkhorn algorithm Osborne algorithm

Algorithm in dual Block coordinate descent Entrywise coordinate descent

Per-iteration progress KL divergence Hellinger divergence

Table 1: Although not traditionally viewed in this way, the four bolded optimization problems can be viewed under
the same lens: each optimizes a joint probability distribution P (x, y) with similar constraints and objectives. The
purpose of this note is to describe the unifying connections in this table and how they can be exploited to obtain
practical algorithms with near-optimal runtimes for all four problems.

These developments all hinge on the perspective of
optimizing distributions highlighted in this note. For
some problems, this leads to rigorous guarantees
that justify algorithms that have long been used in
practice and are nowadays the default algorithms in
many numerical software packages (e.g., POT, OTT,
OTJulia, GeomLoss, MATLAB, R, Lapack, and Eis-
pack); for other problems, this leads to even faster
algorithms in practice and/or theory.
The goal of this note is to explain this story with

an emphasis on the unifying connections as summa-
rized in Table 1. There are several ways to tell this
story. We start by introducing Optimal Transport
and Minimum Mean Cycle as graph problems (§1)
before re-formulating them as optimization problems
over joint distributions (§2), which makes clear their
connections to Matrix Scaling and Balancing (§3),
and naturally leads to the development (§4) and
analysis (§5) of scalable algorithms based on entropic
regularization. Throughout this narrative, we keep
two threads as equals: the fixed marginal setting
(Table 1, left) and the symmetric marginal setting
(Table 1, right). As the parallels between these two
threads are nearly exact(!), the mental overhead of
two threads is hopefully minimal and outweighed by
the pedagogical benefit of unifying these two halves
of the story—which have often been studied in sep-
arate papers and sometimes even separate commu-
nities.
The presentation of this article is based on Part

I of the author’s thesis [6], and in the interest of
brevity, we refer the reader there for proofs and fur-
ther references (we make no attempt to be compre-
hensive here given the short length of this note and
the immense literature around each of the four prob-
lems, e.g., thousands of papers in the past decade
just on Optimal Transport).

Notation. We associate the set of probability dis-
tibutions on n atoms with the simplex ∆n ∶= {p ∈
Rn⩾0 ∶ ∑i pi = 1}, and the set of joint probability dis-

tributions on n × n atoms with ∆n×n ∶= {P ∈ Rn×n⩾0 ∶
∑ij Pij = 1}. We write 1 to denote the all-ones vec-
tor in Rn, and G = (V,E, c) to denote a graph with
vertex set V , edge set E, and edge weights c ∶ E → R.
One caution: we write exp[A] with brackets to de-
note the entrywise exponential of a matrix A.

1 Two classical graph problems
Here we introduce the first two characters in our
story: the problems of Optimal Transport (OT) and
Minimum Mean Cycle (MMC). We begin by intro-
ducing both in the language of graphs as this helps
make the parallels clearer when we transition to the
language of probability afterward.

1.1 Optimal Transport

In the language of graphs, the OT problem is to find
a flow on a bipartite graph that routes “supplies”
from one vertex set to “demands” in the other ver-
tex set in a minimum-cost way. For convenience,
we renormalize the supply/demand to view them as
distributions and abuse notation by denoting both
vertex sets by [n] = {1, . . . , n}.

Definition 1 (Optimal Transport). Given a
weighted bipartite graph G = ([n] ∪ [n],E, c) and
distributions µ, ν ∈∆n, the OT problem is

min
f ∶E→R⩾0

∑j∈[n] f(i,j)=µi, ∀i∈[n]
∑i∈[n] f(i,j)=νj , ∀j∈[n]

∑
e∈E

f(e)c(e) . (1)

OT dates back to Monge in the 18th century when
he asked: what is the least-effort way to move a
mound of dirt into a nearby ditch of equal vol-
ume [41]? In operations research, OT appears in
textbook problems where one seeks to, e.g., find
the minimum-cost way to ship widgets from facto-
ries to stores [16]. Recently, OT has become cen-
tral to diverse applications in data science—ranging
from machine learning to computer vision to the
natural sciences—due to the ability of OT to com-
pare and morph complex data distributions beyond



Volume 30 Number 1 – October 2022 3

Fixed marginals Symmetric marginals

Graphs Bipartite Flows Circulations

Matrices Transportation polytope Circulation polytope

Distributions Couplings Self-couplings

Table 2: Informal dictionary for translating between graphs, matrices, and distributions. See §2 for details.

just dirt mounds and widget allocations. Prototypi-
cal examples include data distributions arising from
point clouds in statistics, images or 3D meshes in
computer graphics, document embeddings in natu-
ral language processing, or cell phenotyopes or fMRI
brain scans in biology. For details on the many appli-
cations of OT, we refer to the recent monograph [47].

A central challenge in all these applications is scal-
able computation. Indeed, data-driven applications
require computing OT when the number of data
points n in each distribution is large. Although OT
is a linear program (LP), it is a very large LP when
n is in, say, the many thousands or millions, and
it is a longstanding challenge to develop algorithms
that can compute OT (even approximately) in a rea-
sonable amount of time for large n. See, e.g., the
standard texts [16, 52, 47, 3] for a discussion of the
extensive literature on OT algorithms which dates
back to Jacobi in the 19th century.

1.2 Minimum Mean Cycle

We now turn to the second character in our story.
Below, recall that a cycle is a sequence of edges that
starts and ends at the same vertex.

Definition 2 (Minimum-Mean-Cycle). Given a
weighted directed graph G = (V,E, c), the MMC
problem is

min
cycle σ in G

1

∣σ∣ ∑e∈σ
c(e) . (2)

MMC is a classical problem in algorithmic graph
theory which has received significant attention over
the past half century due to its many applications.
A canonical textbook example is that, at least in an
idealized world, finding arbitrage opportunities on
Wall Street is equivalent to solving an MMC prob-
lem [25, §24]. Other classical applications range
from periodic optimization (e.g., MMC is equiva-
lent to finding an optimal policy for a determin-
istic Markov Decision Process [59]), to algorithm
design (e.g., MMC provides a tractable alternative
to the bottleneck step in the Network Simplex al-
gorithm [34]), to control theory (e.g., MMC char-
acterizes the spectral quantities in Max-Plus alge-
bra [20]).

Just as for OT, a central challenge for MMC is
large-scale computation. The first polynomial-time
algorithm1 was based on dynamic programming, due
to Karp in 1972 [38]. However, its runtime is O(n3),
and an extensive literature has sought to reduce this
cubic runtime in both theory and practice; see e.g.,
the references within the recent papers [11, 22, 33].

2 Graphs, matrices, and distributions

As written, the optimization problems (1) and (2)
defining OT and MMC appear quite different. Here
we describe reformulations that are strikingly paral-
lel. This hinges on a simple but useful connection be-
tween graph flows, non-negative matrices, and joint
distributions, as summarized in Table 2. Below, let
C denote the n × n matrix whose ij-th entry is the
cost c(i, j) if (i, j) is an edge, and ∞ otherwise.

OT is linear optimization over joint distri-
butions with fixed marginals. Consider a fea-
sible flow for the OT problem in (1), i.e., a flow
f ∶ E → R⩾0 routing the supply distribution µ to
the demand distribution ν. This flow is naturally
associated with a matrix P ∈ Rn×n⩾0 whose ij-th en-
try is the flow f(i, j) on that edge. The netflow
constraints on f then simply amount to constraints
on the row and column sums of P , namely P1 = µ
and PT1 = ν. Thus, OT can be re-written as the LP

min
P ∈∆n×n ∶ P1=µ, PT 1=ν

⟨P,C⟩ . (3)

This decision set {P ∈ ∆n×n ∶ P1 = µ, PT1 = ν} is
called the transportation polytope and can be equiv-
alently viewed as the space of “couplings”—a.k.a.,
joint distributions P (x, y) with first marginal µ and
second marginal ν.

MMC is linear optimization over joint distri-
butions with symmetric marginals. MMC ad-
mits a similar formulation by taking an LP relax-
ation. Briefly, the idea is to re-write the objective in
terms of matrices, as above, and then take the con-
vex hull of the discrete decision set. Specifically, re-

1It is worth remarking that MMC is polynomial-time solv-
able while the seemingly similar problem of finding a cycle
with minimum (total) weight is NP-hard [52, §8.6b].
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write the objective 1
∣σ∣ ∑e∈σ c(e) as ⟨Pσ,C⟩ by associ-

ating to a cycle σ the n×nmatrix Pσ with ij-th entry
1/∣σ∣ if the edge (i, j) ∈ σ, and zero otherwise. By
the Circulation Decomposition Theorem [16, Prob-
lem 7.14], the convex hull of the set {Pσ ∶ σ cycle} of
normalized cycles is the set {P ∈ ∆n×n ∶ P1 = PT1}
of normalized circulations, and so the LP relaxation
of MMC is

min
P ∈∆n×n ∶ P1=PT 1

⟨P,C⟩ , (4)

and moreover this LP relaxation is exact. For details
see, e.g., [3, Problem 5.47]. This decision set {P ∈
∆n×n ∶ P1 = PT1} can be equivalently viewed as the
space of “self-couplings”—a.k.a., joint distributions
P (x, y) with symmetric marginals.

3 Entropic regularization and matrix
pre-conditioning

Together, (3) and (4) put OT and MMC on equal
footing in that they are both LP over spaces of joint
distributions P (x, y) with constrained marginals—
fixed marginals for OT, and symmetric marginals
for MMC. We now move from problem formulation
to algorithm development, continuing in a parallel
way.

The approach discussed in this note, motivated
by the interpretation of OT and MMC as optimiz-
ing distributions, is to use entropic regularization.
Namely, add −η−1H(P ) to the objectives in (3)
and (4), where H(P ) = ∑ij Pij logPij denotes the
Shannon entropy of P . See Tables 3 and 4, bottom
left. This regularization is convex because the en-
tropy function is concave (in fact, strongly concave
by Pinsker’s inequality [19, Section 4.3]). The reg-
ularization parameter η > 0 has a natural tradeoff:
intuitively, smaller η makes the regularized problem
“more convex” and thus easier to optimize, but less
accurate for the original problem.

But let’s step back. Why use entropic regulariza-
tion? The modern optimization toolbox has many
other convex regularizers. The key benefit of en-
tropic regularization is that it reduces the problems
of OT and MMC to the problems of Matrix Scaling
and Matrix Balancing, respectively. This enables the
application of classical algorithms for the latter two
problems to the former two problems. Below we in-
troduce these two matrix pre-conditioning problems
in §3.1 and then explain this reduction in §3.2.

3.1 Matrix pre-conditioning

We now introduce the final two characters in our
story: Matrix Scaling and Matrix Balancing. In

words, these two problems seek to left- and right-
multiply a given matrix K by diagonal matrices
in order to satisfy certain marginal constraints—
fixed marginals for Matrix Scaling, and symmetric
marginals for Matrix Balancing. For the former, the
scaling is of the form XKY ; for the latter, it is a
similarity transform XKX−1.

Definition 3 (Matrix Scaling). Given K ∈ Rn×n>0
and µ, ν ∈ ∆n, find positive diagonal matrices X,Y
such that P = XKY has marginals P1 = µ and
PT1 = ν.

Definition 4 (Matrix Balancing). Given K ∈ Rn×n>0 ,
find a positive diagonal matrix X such that P =
XKX−1 has symmetric marginals P1 = PT1.

Both problems are defined here in a simplified way
that suffices for the purposes of this note. See the
discussion section for details.

Matrix Scaling and Matrix Balancing are classical
problems in their own right and have been studied in
many communities over many decades under many
names. See the review [37] for a historical account.
The most famous application of these problems is
their use as pre-conditioning subroutines before nu-
merical linear algebra computations [54, 43, 48]. For
example, Matrix Balancing is nowadays used by de-
fault before eigenvalue decomposition and matrix ex-
ponentiation in standard numerical packages such as
R, MATLAB, Lapack, and Eispack.

3.2 Reduction

As alluded to above, entropic regularization leads to
the following reductions. Below, K = exp[−ηC] de-
notes the matrix with entries Kij = exp(−ηCij). For
simplicity, assume henceforth that G is complete so
that K is strictly positive, which ensures existence
and uniqueness of the Matrix Scaling/Balancing so-
lutions P . The general case is similar but requires
combinatorial properties of the sparsity pattern [30,
50].

Lemma 3.1 (Entropic OT is Matrix Scaling). For
any η > 0, the entropic OT problem has a unique
solution. It is the solution P = XKY to the Matrix
Scaling problem for K = exp[−ηC].

Lemma 3.2 (Entropic MMC is Matrix Balancing).
For any η > 0, the entropic MMC problem has a
unique solution. It is the solution P = XKX−1 to
the Matrix Balancing problem for K = exp[−ηC],
modulo normalizing P by a constant so that the sum
of its entries is 1.

Both lemmas are immediate from first-order op-
timality conditions and are classical facts that have
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Primal Dual

Optimal Transport minP ∈∆n×n ∶ P1=µ,PT 1=ν ⟨P,C⟩ maxx,y∈Rn minij(Cij − xi − yj) + ⟨µ,x⟩ + ⟨ν, y⟩
Matrix Scaling minP ∈∆n×n ∶ P1=µ,PT 1=ν ⟨P,C⟩ − 1

η
H(P ) maxx,y∈Rn sminij(Cij − xi − yj) + ⟨µ,x⟩ + ⟨ν, y⟩

Table 3: Primal/dual LP formulations of OT (top) and its regularization (bottom). The regularization is entropic
in the primal and softmin smoothing in the dual. The regularized problem is a convex formulation of the Matrix
Scaling problem for the matrix K = exp[−ηC].

Primal Dual

Minimum Mean Cycle minP ∈∆n×n ∶ P1=PT 1 ⟨P,C⟩ maxx∈Rn minij Cij + xi − xj

Matrix Balancing minP ∈∆n×n ∶ P1=PT 1 ⟨P,C⟩ − 1
η
H(P ) maxx∈Rn sminij Cij + xi − xj

Table 4: Analog to Table 3 in the setting of symmetric marginals rather than fixed marginals. The story is mirrored,
with OT and Matrix Scaling replaced by MMC and Matrix Balancing, respectively.

been re-discovered many times; see [37] for a histori-
cal account. There is also an elegant dual interpreta-
tion. Briefly, entropic regularization in the primal is
equivalent to softmin smoothing in the dual, i.e., re-
placing mini ai by smini ai ∶= −η−1 log∑i exp(−ηai)
when writing the dual LP in saddle-point form. See
Tables 3 and 4, bottom right. Modulo a simple
transformation, the optimal scaling matrices X,Y
correspond to the optimal solutions to these dual
regularized problems—a fact that will be exploited
and explained further below.

4 Simple scalable algorithms
Since entropic OT and entropic MMC are respec-
tively equivalent to Matrix Scaling and Matrix Bal-
ancing (Lemmas 3.1 and 3.2), it suffices to solve the
latter two problems. For both, there is a simple
algorithm that has long been the practitioner’s al-
gorithm of choice. For Matrix Scaling, this is the
Sinkhorn algorithm; for Matrix Balancing, this is
the Osborne algorithm. These algorithms have been
re-invented many times under different names, see
the survey [37, §3.1]. Pseudocode is in Algorithms 1
and 2. For shorthand, we write r(P ) = P1 and
c(P ) = PT1 to denote row and column sums, and
write ⊙ and ./ to denote entrywise multiplication
and division. We additionally write D(v) to denote
the diagonal matrix whose diagonal is the vector v.
Both algorithms have natural geometric interpre-

tations as alternating projection in the primal and
coordinate descent in the dual. We explain both
interpretations as they provide complementary in-
sights.

Primal interpretation: alternating projec-
tion. The most direct interpretation of the
Sinkhorn algorithm is that it alternately projects2

2This projection is to the closest point in KL divergence
rather than Euclidean distance. In the language of informa-

Algorithm 1 Sinkhorn’s Algorithm for scaling a ma-
trix K to have marginals µ, ν. To solve OT to ±ε,
run on K = exp[−ηC] where η ≈ ε−1 logn.
1: Initialize X,Y ← I No scaling
2: Until convergence:
3: X ←X ⊙D(µ./r(XKY )) Fix rows
4: Y ← Y ⊙D(ν./c(XKY )) Fix columns

Algorithm 2 Osborne’s Algorithm for balancing a
matrix K to have symmetric marginals. To solve
MMC to ±ε, run on K = exp[−ηC] where η ≈
ε−1 logn.

1: Initialize X ← I No balancing
2: Until convergence:
3: Choose coordinate i ∈ [n] to fix

4: Xii ←Xii ⋅
√
ci(XKX−1)/ri(XKX−1)

the current matrix P = XKY onto either the sub-
space {P ∈ ∆n×n ∶ P1 = µ} with correct row
marginals, or the subspace {P ∈ ∆n×n ∶ PT1 = ν}
with correct column marginals. Note that when it
corrects one constraint, it potentially violates the
other. Nevertheless, the algorithm converges to the
unique solution at the subspaces’ intersection, see
Figure 1 for a cartoon illustration. The Osborne
algorithm is analogous, except that it alternately
projects P = XKX−1 onto n subspaces: the sub-
spaces {P ∈∆n×n ∶ (P1)i = (PT1)i} defined by equal
i-th row and column sums, for all i ∈ [n]. Here there
is a choice for the order of subspaces to project onto;
see [13] for a detailed discussion of this.

Dual interpretation: coordinate descent.
The Sinkhorn algorithm also admits an appealing
dual interpretation. In the dual, entropic OT has 2n
variables—the Lagrange multipliers x, y ∈ Rn respec-

tion geometry, this is an I-projection.
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Figure 1: In the primal, the Sinkhorn algorithm alter-
nately projects the iterate P =XKY ∈ Rn×n onto the two
subspaces corresponding to the row/column marginal
constraints. The Osborne algorithm is analogous, but
with P =XKX−1 and n subspaces.

Figure 2: In the dual, the Sinkhorn algorithm performs
exact block coordinate descent by iteratively updating
the scaling matrices X or Y so as to optimally improve
the dual objective given that all other entries are fixed.
The Osborne algorithm is analogous but updates indi-
vidual entries of X rather than blocks.

tively corresponding to the row and column marginal
constraints in the primal. See Table 3, bottom right.
Via the transformation Xii = eηxi and Yii = eηyi ,
these 2n dual variables are in correspondence with
the 2n diagonal entries of the scaling matricesX and
Y that the Sinkhorn algorithm seeks to find. One
can verify that the Sinkhorn algorithm’s row update
(Line 3 of Algorithm 1) is an exact block coordinate
descent step that maximizes the dual regularized ob-
jective over all x ∈ Rn given that y is fixed; vice versa
for the column update. See Figure 2 for a cartoon il-
lustration. The Osborne algorithm is analogous, ex-
cept that now there are only n dual variables x ∈ Rn
since there are only nmarginal constraints in the pri-
mal, see Table 4, bottom right. When the Osborne
algorithm updatesXii = eηxi to equate the i-th entry
of the row and column marginals, this corresponds
to an exact coordinate descent step on xi.

5 Runtime analysis

We now turn to convergence analysis. The key chal-
lenge is how to measure progress. Indeed, an iter-
ation of the Sinkhorn algorithm corrects either the
row or column marginals, but messes up the oth-
ers. Similarly, an iteration of the Osborne algorithm
corrects one row-column pair, but potentially messes

up the n − 1 others. From the cartoons in Figures 1
and 2, we might hope to make significant progress
in each iteration—but how do we quantify this?

There’s an entire literature on this question – or
at least for Matrix Scaling; for Matrix Balancing,
things were much less clear until quite recently: even
polynomial convergence was unknown for half a cen-
tury until the breakthrough paper [44], let alone
near-linear time convergence [13]. In the 1980s,
Franklin and Lorenz established that Sinkhorn iter-
ations contract in the Hilbert projective metric [31];
however, the contraction rate incurs large factors of
n, which leads to similarly large factors of n in the
final runtime. Another approach uses auxiliary Lya-
punov functions to measure progress, for example
the permanent of the scaled matrix [39]; however
this too incurs extraneous factors of n. See the sur-
vey [37].

As it turns out, there is a short, simple, and strik-
ingly parallel analysis approach that leads to run-
times for both the Sinkhorn and Osborne algorithms
that scale in the dimension n as Õ(n2) [13, 14].
These are near-optimal3 runtimes in n in the sense
that in the absence of further structure, it takes
Θ(n2) time to even read the input for any of the
matrix/graph problems discussed in this note, let
alone solve them.

At a high level, this analysis hinges on using the
regularized dual objective as a Lyapunov function
(an idea dating back to the 1990s for Matrix Scal-
ing [35]), and observing that each iteration of the
Osborne/Sinkhorn algorithm significantly improves
this Lyapunov function by an amount related to how
violated the marginal constraints are for the current
iterate P (“progress lemma”). In its simplest form,
the analysis argues that if the current iterate has
very violated marginal constraints, then the Lya-
punov function improves significantly; and since the
Lyapunov function is bounded within a small range,
this can only continue for a small number of itera-
tions before we arrive at an iterate with reasonably
accurate marginals—and this must be a reasonably
accurate solution.

The progress lemma is itself composed of two
steps, both of which leverage the probabilistic per-
spective highlighted in this note. The first step is a
direct calculation which shows that an iteration im-
proves the dual objective by the current imbalance
between the marginal distributions as measured in
the KL divergence for Sinkhorn, or the Hellinger di-
vergence for Osborne. The second step uses a prob-
abilistic inequality to analyze this imbalance. The

3The “near” in “near-optimal” refers to the logarithmic
factors suppressed by the Õ notation.
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point is that since probabilistic inequalities apply
for (infinite-dimensional) continuous distributions,
they are independent of the dimension n. Oper-
ationally, this allows switching between the dual
(where progress is measured) and the primal (where
solutions are desired) without incurring factors of n,
thereby enabling a final runtime without extraneous
factors of n. Full details can be found in [14, 29]
for the Sinkhorn algorithm and [13] for the Osborne
algorithm.

6 Discussion

For each of the four problems in this note, much
more is known and also many questions remain.
Here we briefly mention a few selected topics.

Algorithm comparisons and the nuances
therein. Each optimization problem in this note
has been studied for many decades by many com-
munities, which as already mentioned, has led to
the development of many approaches besides the
Sinkhorn and Osborne algorithms. Which algorithm
is best? Currently there is no consensus. We sus-
pect that the true answer is nuanced because differ-
ent algorithms are often effective for different types
of problem instances. For example, specialized com-
binatorial solvers blow competitors out of the water
for small-to-medium problem sizes by easily achiev-
ing high accuracy solutions [28], whereas Sinkhorn
and Osborne are the default algorithms in most nu-
merical software packages for larger problems where
moderate accuracy is acceptable. Both parame-
ter regimes are important, but typically for differ-
ent application domains. For example, high preci-
sion may be relevant for safety-critical or scientific
computing applications. Whereas the latter regime
of moderate-accuracy solutions for large-scale prob-
lems is typically relevant for modern data-science
applications of OT, since there is no need to solve be-
yond the inherent modeling error (OT is usually just
a proxy loss in machine learning applications) and
discretization error (µ, ν are often thought of as sam-
ples from underlying true distributions). The lat-
ter regime is also relevant for pre-conditioning ma-
trices before eigenvalue computation, since Matrix
Scaling/Balancing optimize objectives that are just
proxies for fast convergence of downstream eigen-
value algorithms [43, 48].

Theory vs practice. Comparisons between algo-
rithms are further muddled by discrepancies between
theory and practice. Sometimes algorithms are more
effective in practice than our best theoretical guaran-
tees suggest—is this because current analysis tech-

niques are lacking, or because the input is an easy
benchmark, or because of practical considerations
not captured by a runtime theorem? For instance,
the Sinkhorn algorithm is “embarrasingly paralleliz-
able” and interfaces well with modern GPU hard-
ware [27]. On the flip-side, some algorithms with in-
credibly fast theoretical runtimes are less practical
due to large constant or polylogarithmic factors hid-
den in the Õ runtime. At least for now, this includes
the elegant line of work (e.g., [56, 24, 4, 17]) based on
the Laplacian paradigm, which very recently culmi-
nated in the incredible theoretical breakthrough [22]
that solves the more general problem of minimum
cost flow in time that is almost-linear in the input
sparsity and polylogarithmic in 1/ε. I am excited to
see to what extent theory and practice are bridged
in the upcoming years.

Exploiting structure. All algorithms discussed
so far work for generic inputs. This robustness comes
at an unavoidable Ω(n2) cost in runtime/memory
from just reading/storing the input. This precludes
scaling beyond n in the several tens of thousands,
say, on a laptop. For larger problems, it is essen-
tial to exploit “structure” in the input. What struc-
ture? This is a challenging question in itself because
it is tied to the applications and pipelines relevant
to practice. For OT, typically µ, ν are distributions
over Rd and the cost C is given by pairwise dis-
tances, raised to some power p ∈ [1,∞). This is
the p-Wasserstein distance, which plays an analo-
gous role to the ℓp distance [57]. Then the n × n
matrix C is implicit from the 2n points in µ, ν. In
low dimension d, this at least enables reading the
input in O(n) time—can OT also be solved in O(n)
time? A beautiful line of work in the computational
geometry community has worked towards this goal,
a recent breakthrough being n ⋅ (ε−1 logn)O(d) run-
times for (1±ε) multiplicatively approximating OT
for p = 1 [49, 1]. We refer to those papers for a
detailed account of this literature and the elegant
ideas therein. Low-dimensional structure can also
be exploited by the Sinkhorn algorithm. The ba-
sic idea is that the n2 runtime arises only through
multiplying the n × n kernel matrix K = exp[−ηC]
by a vector—a well-studied task in scientific com-
puting related to Fast Multipole Methods [15]—and
this can be done efficiently if the distributions lie on
low-dimensional grids [55], geometric domains aris-
ing in computer graphics [55], manifolds [5], or al-
gebraic varieties [12]. Preliminary numerics suggest
that in these structured geometric settings, Sinkhorn
can scale to millions of data points n while maintain-
ing reasonable accuracy [5]. Many questions remain
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open in this vein, for example graceful performance
degradation in the dimension d, instance-optimality,
and average-case complexity for “real-world inputs”.

Optimizing joint distibutions with many con-
strained marginals. This note focuses on opti-
mizing joint distributions P (x, y) with k = 2 con-
strained marginals, and it is natural to ask about
k ⩾ 2. These problems are called Multimarginal OT
in the case of fixed marginals and linear objectives,
and arise in diverse applications in fluid dynam-
ics [18], barycentric averaging [2], graphical mod-
els [36], distributionally robust optimization [23],
and much more; see the monographs [47, 46, 42].
The setting of symmetric marginals arises in quan-
tum chemistry via Density Functional Theory [26,
21]. A central challenge in all these problems is that
in general, it is intractable even to store a k-variate
probability distribution, let alone solve for the op-
timal one. Indeed, a k-variate joint distribution in
which each variable takes n values corresponds to a
k-order tensor that has nk entries—an astronomical
number even for tiny n, k, say n, k = 20. As such,
a near-linear runtime in the size of P (the goal in
this note for k = 2) is effectively useless for large k,
and it is essential to go beyond this by exploiting
structure via implicit representations. See part II of
the author’s thesis [6] and the papers upon which it
is based [8, 10, 7, 9] for a systematic investigation of
what structure enables poly(n, k) time algorithms,
and for pointers to the extensive surrounding litera-
ture.

Matrix Balancing in ℓp norms. The original pa-
pers [45, 43] studied Matrix Balancing in the follow-
ing setting: given K ∈ Cn×n, find diagonal X such
that the i-th row and column of XKX−1 have equal
ℓp norm, for all i ∈ [n]. Definition 4 is equivalent
for any finite p (which suffices for this note) and elu-
cidates the connection to optimizing distributions.
See [13, §1.4] for details. For the case p =∞, similar
algorithms have been developed and were recently
shown to converge in polynomial time in the break-
through work [53]. It would be interesting to recon-
cile the case p = ∞ as the analysis techniques there
seem different and the connection to optimizing dis-
tributions seems unclear.

Entropic OT. In this note, entropically regular-
ized OT was motivated as a means to an end for
computing OT efficiently. However, it has emerged
as an interesting quantity in its own right and is now
used in lieu of OT in many applications due to its
better statistical and computational properties [27,

32, 40], as well as its ability to interface with com-
plex deep learning architectures [47]. Understand-
ing these improved properties is an active area of
research bridging optimization, statistics, and appli-
cations. We are not aware of an analogous study of
entropic MMC and believe this may be interesting.
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1 Introduction

Advances in randomized numerical linear algebra
(randNLA) in the new millennium have reduced
the complexity of a variety of fundamental lin-
ear algebraic operations, including finding the top-
k eigenspace or principal components of a matrix
or solving a large-scale linear system of equations.
These advances have implications throughout opti-
mization that have not yet been fully realized. This
article provides a brief overview of some of the most
important and useful tools in randomized numerical
linear algebra, a few case studies of their use in opti-
mization, and a tour of what we believe possible with
these methods. The major technique is to approxi-
mate the most computationally challenging step in
an optimization algorithm as the solution to a lin-
ear system Ax = b; and to approximate the matrix
A by a matrix that is the sum of a low rank matrix
and a diagonal matrix in order to efficiently solve or
precondition an indirect solver for the linear system.
In particular, we showcase major advances in linear
system solvers, smooth optimization, stochastic op-
timization, composite (smooth + nonsmooth) opti-
mization, and semidefinite optimization that can be
achieved using these methods. These advances yield
speedups of 3–58x on important machine learning
problems like lasso, logistic regression, SVM, and
deep learning.

To understand the potential gains, consider Figure
1, which compares the recent NysADMM method
from [39] to SAGA [9] on an ℓ1-regularized logis-
tic regression problem with a 60,000 × 60,000 data
matrix formed from a random features transfor-
mation of the CIFAR-10 data set (CIFAR-10 rf).
NysADMM combines ideas from randNLA with the
ADMM algorithm to obtain a scalable large-scale
optimization algorithm. SAGA is a stochastic gra-
dient method and is the default solver used by
scikit-learn for solving ℓ1-regularized logistic regres-
sion. Figure 1 shows NysADMM runs 8x faster than
SAGA using the default stopping criterion in scikit-

learn. We see randNLA can dramatically accelerate
large scale optimization.
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Figure 1: NysADMM vs. SAGA on ℓ1-logistic regres-
sion with CIFAR-10 rf.

2 Background
Randomized rangefinder. The methods we
present here build on a fundamental primitive: the
randomized rangefinder. Given an input matrix
B ∈ Rm×n and a target dimension s, the random-
ized rangefinder produces an orthonormal matrix
Q ∈ Rm×s whose columns span (as well as possible)
the same range as the top s left singular vectors of
B. See [22] for a recent review or [16] for an earlier
exposition.

One simple method to compute such a Q starts
with a random test matrix Ω ∈ Rn×s, for example,
a matrix with iid N (0,1) entries. We review other
choices in Section 4. The randomized rangefinder al-
gorithm computes a sketch Y = BΩ ofB, and returns
an orthonormal basis Q for Y . The main computa-
tional work here consists of s matrix-vectors prod-
ucts (matvecs) with the matrix B, which typically
dominates the O(ns2) work required to compute an
orthonormal basis. The memory required is O(ns),
which is smaller than the memory required to store
B if B is dense.
How well does the rangefinder work? Supposem ⩾

n and matrix B ∈Rm×n has singular values σ1 ⩾ ⋯ ⩾
σn. Then for any k < s − 1, the expected spectral-
norm error of the randomized rangefinder, E ∥(I −
PQ)B∥, with standard normal test matrix Ω ∈Rn×s

is bounded by

⎛
⎝
1 +
√

k

s − k − 1
⎞
⎠
σk+1 + γ

⎛
⎝∑j>k

σ2
j

⎞
⎠

1/2

,

where γ = E ∥Γ†∥ for standard normal Γ ∈Rk×s [22].
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We see the randomized rangefinder works extremely
well when the singular values of B decay rapidly. In
particular, if B has rank r ⩽ k so that σk+1 = 0, the
randomized rangefinder exactly recovers the matrix
B as E ∥(I − PQ)B∥ = 0.

Randomized SVD. The randomized rangefinder
can be used to compute a low rank approximation
of a matrix. Given a basis Q that approximately
spans the top s-dimensional left singular subspace
of a matrix B, compute the SVD of QTB = ÛΣV T .
Then B ≈ (QÛ)ΣV T approximates the top-s SVD
of B. If Q exactly spans the top s-dimensional left
singular subspace of B, then this approximation is
exact.

Randomized Nyström approximation. It is
even simpler to compute an approximate eigenvalue
decomposition of a matrix A ∈ Rn×n. Given test
matrix Ω ∈ Rn×s, the Nyström approximation of A
is

A ≈ AΩ(ΩTAΩ)†(AΩ)T .

Notice that given the sketch Y = AΩ, no further
access to A is needed. We may form an approximate
eigenvalue decomposition using ideas similar to the
randomized SVD. A stable implementation requires
a bit more care; see [30].

Distributed and parallel. One delightful aspect
of randNLA is how well its primitives adapt to mod-
ern computational paradigms, such as computation
on a GPU or in a distributed system; indeed, the in-
creasing importance of parallel and distributed com-
putation makes the techniques of randNLA an essen-
tial part of any computational toolbox. The funda-
mental workhorse of randNLA is the computation
of a sketch Y = AΩ of a matrix A. It is easy to
distribute this computation over the rows of A (con-
catenate the sketch of each row Yi∶ = Ai∶Ω) or over
the columns of A (sum the sketch of each column
Y = ∑j(A∶jΩ)).

Kinds of guarantees. We state many of the
bounds in this newsletter as bounds in expectation.
High probability bounds are also available: the sim-
plest are easy to prove from an expectation bound
by applying Markov’s inequality: if E ∥A − Â∥ ⩽ ϵ,
then

Prob [∥A − Â∥ ⩾ ϵt] ⩽ 1

t
.

For most results in this newsletter, exponential con-
centration bounds are also available.

More importantly, these algorithms yield methods
that work well and reliably in practice. To prove
convergence of optimization algorithms that rely on
these methods, we often use union bounds to guaran-
tee good performance at every iteration of an outer
optimization algorithm. In our experiments, we sim-
ply never see any large deviations from expected per-
formance that would confound the optimizer.

Low rank + diagonal. To state the obvious: low
rank approximation works well for matrices that are
low rank. However, in optimization, many impor-
tant matrices are the sum of a low rank part and a
diagonal part: for example, the Hessian of a regu-
larized linear system, or the covariance matrix cor-
responding to a factor model in finance. Direct low
rank approximation of these matrices works poorly.
Instead, to approximate these matrices, it is best to
subtract off the diagonal first and sketch the rest
to form a low rank approximation. Interestingly,
we are not aware of a linear algebraic method to
find a good low rank + diagonal approximation to
a matrix. Iterative methods like matrix completion
are generally required; these work well but are gen-
erally too expensive to be useful in the context of
randNLA. Luckily, the diagonal part of the matrix
is often known in advance.

Statistical perspectives. For many large-scale
machine learning problems, solving the associated
optimization problem to high-accuracy often yields
little benefit for predictions. In this case, we can re-
place a deterministic solver with a randomized solver
with impunity. We can formalize our understand-
ing of which problems are unharmed by randomized
methods by considering the irreducible statistical er-
ror due to uncertain problem data. So long as opti-
mization error is bounded by statistical error, there
is no statistical benefit to solving the optimization
problem to higher precision [1, 19].

Many theoretical and practical algorithms exploit
the fact that solving a problem beyond statistical
error is unimportant for practical performance. For
example, randomized PCA works as well as PCA
on large scale statistical datasets: [34] show that
randomized PCA via the sketch-and-solve SVD [10,
20] works nearly as well as PCA to recover the top
principal components when data is generated by the
spike covariance model which models the data ma-
trix as the sum of a low rank matrix and an inde-
pendent identically distributed (iid) Gaussian ma-
trix. As another example, Falkon [28] is a large-scale
method for approximate kernel ridge regression that
uses column sampling to solve a reduced problem.
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[28] show that Falkon obtains minimax optimal sta-
tistical performance, even though it does not solve
the original problem.

3 Optimization problems
This section surveys some paradigmatic applications
of randNLA to speed up optimization. We organize
our discussion by application area, and consider lin-
ear systems, statistical learning problems, smooth
optimization, and conic optimization, each in its own
subsection. The solution of a linear system is at the
computational core of a variety of optimization algo-
rithms, including first-order solvers for a variety of
statistical learning problems, Newton’s method, and
interior point methods. Thus, the first subsection on
linear system solvers is fundamental for understand-
ing ideas in the subsequent subsections.

3.1 Linear systems

Many algorithms rely on a fast solver for the regu-
larized linear system

(A + µI)x = b,

where A ∈ Sn+ is symmetric psd and µ ⩾ 0. In the
context of the regularized least squares problem

minimize
1

2
∥Ux − y∥2 + µ

2
∥x∥2,

A = UTU is the Gram matrix and b = UT y is
the righthand side. This problem appears in iter-
atively reweighted least squares, (kernel) ridge re-
gression, Gaussian processes, approximate cross val-
idation [29], influence functions [17], and hyperpa-
rameter optimization [21]. For small systems (n ⩽
50,000), direct methods are most efficient: these
factor the matrix A and then solve the factored sys-
tem. For larger systems, indirect methods are pre-
ferred: these iteratively solve the system by apply-
ing the matrix A to the iterate x to form the resid-
ual r = Ax − b at each iteration, which is used to
update x. Classic Krylov methods like Conjugate
Gradients (CG) are guaranteed to return, at the
kth iteration, the best solution x in the kth Krylov
subspace Kk = Span{b,Ab, . . . ,Ak−1b}. CG requires

O(
√
κ(A) log( 1

ϵ
)) matvecs to reach ϵ accuracy. So

the condition number κ(A) = λ1(A)/λn(A) matters
tremendously!

Sketch-and-solve. A natural first idea is to solve
an easier problem instead. Given a rank-s (say,
Nyström) approximation A ≈ Â = V Λ̂V T to A ∈ Sn+ ,
it is easy to solve

(Â + µI)x̂ = b instead of (A + µI)x⋆ = b.

In fact, we can apply the inverse of Â+µI in O(ns)
time, since

(Â + µI)−1 = V (Λ̂ + µI)−1V T + 1

µ
(I − V V T ).

This solution paradigm, which returns the solution x̂
to the sketched problem, is called sketch-and-solve.
Variants of this idea approximate A = UTU using
the sketch of a tall-skinny factor U ∈Rm×n [33, 22].
Sketch-and-solve works well if b ∈ span(V ), but in

general, high accuracy solutions require large sketch
sizes s → n: a guaranteed ϵ-accurate solution re-
quires a sketch size s for which λs ⩽ ϵµ [12], where
λ1 ⩾ ⋯ ⩾ λn are the eigenvalues of A. Hence, sketch-
and-solve is only useful for low accuracy solutions
(large ϵ) to strongly regularized problems (large µ),
or when A is low rank. For example, Nyström
sketch-and-solve works well for kernel ridge regres-
sion. Indeed, the Nyström approximation was first
introduced to machine learning in the context of ker-
nel ridge regression [32], and bears a strong resem-
blance to the newer Falkon method [28]. In this set-
ting, the sketch-and-solve solution x̂ achieves good
prediction error even though it may not be close to
the true solution x⋆ [4, 2].

Sketch-and-precondition. An alternative ap-
proach to solving a linear system seeks to improve
the condition number by solving a related system.
For any preconditioner P ≻ 0,

Ax = b ⇐⇒ P −1/2Ax = P −1/2b

P −1/2AP −1/2z = P −1/2b

where x = P −1/2z. Preconditioning works well when
the preconditioner P is easy to invert and results in
a system with much smaller condition number, that
is, κ(P −1/2AP −1/2)≪ κ(A). Common precondition-
ers include the Jacobi preconditioner P = diag(A);
incomplete Cholesky preconditioners, which works
best for structured sparsity; and randomized pre-
conditioners, which approximate the matrix on its
top-k eigenspace and work well for ill-conditioned
matrices with fast spectral decay.

Sketch-and-precondition solvers form a random-
ized preconditioner from a sketch of the matrix A.
These solvers enable fast and accurate solutions
and can solve both overdetermined and underde-
termined least-squares problems. An early sketch-
and-precondition method [27] proposed an algorithm
with runtime O(mn log(n/ϵ) + n4). Progress in the
field has improved the idea substantially: [3] im-
proved the runtime to O(mn log(n/ϵ) + n3 log(n))
and showed that randomized least-squares solvers
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significantly outperform LAPACK on large-scale
overdetermined least-squares problems. A sketch-
and-precondition variant using sparse sketching ma-
trices [8] enables solution in input-sparsity time
O(nnz(A) log (n

ϵ
) + n3 log2(n)) for matrices satisfy-

ing nnz(A) ≪ mn. The LSRN method [23] works
for underdetermined problems with only black-box
access to A.

To explain how these methods work, consider
for simplicity an overdetermined least-squares prob-
lem Ux = b with U ∈ Rm×n, m ≫ n. Sketch-
and-precondition computes a sketch ΩTU using test
matrix Ω ∈ Rm×s, performs a QR-decomposition
ΩTU = QR of the resulting s × n matrix, and uses
R−1 as a preconditioner for U .

We can show UR−1 is well-conditioned using the
subspace embedding property. Suppose Ω ∈Rm×s is a
Gaussian matrix with sketch size s = O(n/ζ2) where
ζ ∈ (0,1). Then the ζ-subspace embedding property
holds [22, 33]: with high probability for all x ∈Rn,

(1 − ζ)∥Ux∥2 ⩽ ∥ΩTUx∥2 ⩽ (1 + ζ)∥Ux∥2.

We can use this result to show that the precondi-
tioned system UR−1 preserves the lengths of vectors
in the range of U . To see how, let x = R−1z. By the
subspace embedding property,

1

1 + ζ
∥ΩTUR−1z∥2 ⩽ ∥UR−1z∥2 ⩽ 1

1 − ζ
∥ΩTUR−1z∥2.

Now using ∥ΩTUR−1z∥2 = ∥Qz∥2 = ∥z∥2, the above
display becomes

1

1 + ζ
∥z∥2 ⩽ ∥UR−1z∥2 ⩽ 1

1 − ζ
∥z∥2,

which bounds the condition number κ(UR−1) ⩽√
1+ζ
1−ζ . In particular, setting ζ = 1

2
, we have

κ(UR−1) ⩽
√
3. Hence preconditioned conjugate

gradient (PCG) applied to UR−1 converges rapidly.

In practice, the sketch can often be computed
faster using a structured test matrix like a random-
ized trigonometric transform or sparse sign matrix;
see Section 4. These structured test matrices also
satisfy the ζ-subspace embedding property with high
probability but generally require a larger sketch size
[22].

Unfortunately, this approach to sketch-and-
precondition is restricted to highly overdetermined
or underdetermined problems, as it requires a QR
decomposition of ΩTU ∈ Rs×n at a cost of O(n3).
It is not useful for square(ish) systems when the
smaller dimension n is still large.
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Figure 2: Nyström PCG is significantly faster than tra-
ditional NLA methods on YearMSD dataset with 15,000
random features.

Nyström PCG. Nyström PCG provides an al-
ternative to sketch-and-precondition that works for
square systems A ∈ Rn×n, and generalizes to an
efficient method for rectangular systems Ux = b,
U ∈ Rm×n, by forming the normal equations Ax ∶=
UTUx = UT b.

Nyström PCG uses the Nyström approximation
to the matrix A: given a rank-s Nyström approxi-
mation

Ânys = V Λ̂V T ≈ A ∈ Sn+ ,

the Nyström preconditioner for the regularized sys-
tem (A + µI)x = b is

Pnys =
1

λ̂s + µ
V (Λ̂ + µI)V T + (I − V V T ).

The inverse of this preconditioner can be applied in
O(ns):

P −1 = (λ̂s + µ)V (Λ̂ + µI)−1V T + (I − V V T ).

We can bound the number of iterations re-
quired to achieve a solution of accuracy ϵ using the
Nyström preconditioner in terms of the effective di-
mension at µ, a smoothed count of eigenvalues ⩾ µ:

deff(µ) =
n

∑
j=1

λj

λj + µ
.

The effective dimension bounds sketch size required
for the preconditioner to achieve constant condition
number [12]:

Theorem 3.1. Construct the randomized Nyström
preconditioner P with rank s = 2⌈1.5deff(µ)⌉ + 1.
Then

E [κ(P −1/2AµP −1/2)] < 28.
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High probability bounds ensuring small condition
number may be established by using a slightly larger
sketch size [12, 39].
Contrast this result with sketch-and-precondition:

while sketch-and-precondition methods rely on the
subspace embedding property and can accelerate the
solution of very skinny or fat rectangular linear sys-
tems, Nyström PCG operates on the principle of
low-rank approximation and so is useful for square
and squareish systems. The main requirement is
that the effective dimension is small, or equivalently,
that the spectrum of A decays quickly. This prop-
erty is common in statistical learning problems. Fig-
ure 2 compares Nyström PCG to traditional numer-
ical linear algebra methods for a regularized least-
squares problem.

Iterative sketching Sketch-and-solve requires a
sketch size of O(1/ϵ2) to ensure an ϵ-approximate
solution, so it is not practical for high precision so-
lutions. Instead, a natural idea is to solve a sequence
of linear systems with sketch-and-solve to converge
to higher accuracy. For example, given an approxi-
mate solution x(0) to Ax = b, iterative refinement via
Richardson’s iteration provides a classical technique
to improve the solution:

x(k+1) = x(k) − η(Ax(k) − b),

where η is a suitably chosen stepsize. Unfortunately,
Richardson’s iteration converges quite slowly in
practice: O(κ log(1/ϵ)) iterations for an ϵ-accurate
solution, where κ is the condition number of A. This
complexity is a factor

√
κ worse than CG.

Pilanci and Wainwright [25] close this gap for
overdetermined unconstrained least-squares prob-
lems using a preconditioned Richardson’s iteration,

x(k+1) = x(k) − ( 1
m
AS(k))

−1
(b −Ax(k))

where A = UTU , AS(k) = UT (S(k))TS(k)U , and

b = UT y. Applying the preconditioner ( 1
m
AS(k))

−1

requires solving the sketched linear system, which
explains the name iterative sketching. With a sketch
size m = Ω(p), [25] shows that iterative sketching
yields an ϵ-accurate solution after O (log ( 1

ϵ
)) iter-

ations, independent of the condition number, and
offers extensions for constrained least-squares prob-
lems such as the lasso. More recently, [18] extend
the iterative Hessian sketch to ridge regression and
obtain analogous results provided the sketch size sat-
isfies m = Ω(deff(µ)). Gower et al. [15] propose a
third approach: at each iteration the linear system

is sketched and the next iterate is chosen to mini-
mize the distance to the previous iterate among all
solutions to the sketched system.

Iterative sketching, like sketch-and-precondition,
can accelerate optimization methods by replacing
linear system solves inside optimization algorithms
(such as Newton’s method [26, 14]) with faster
sketched linear system solves. However, in the expe-
rience of the authors, sketch-and-precondition (and
Nyström PCG in particular) works as well if not bet-
ter [12]. See Figure 5 below for an example.

3.2 Statistical learning problems

Consider the composite optimization problem

minimize ℓ(Ax) + r(x)

where ℓ ∶ Rn → R is smooth, A ∈ Rm×n is a fea-
ture matrix, and r ∶ Rn → R is proxable: that is,
suppose there is an easy (even, closed form) solu-
tion to proxr(x) = argminy r(y) + 1

2
∥x − y∥2 [24].

For example, for r(x) = ∥x∥1, proxr(x) is the soft-
thresholding operator. As examples, we have three
important problems in statistical learning:

• the lasso,

minimize
1

2
∥Ax − b∥22 + γ∥x∥1,

with squared error loss ℓ(x) = 1
2
∥Ax − b∥22;

• ℓ1-regularized logistic regression,

minimize ℓlogistic(Ax) + γ∥x∥1

with logistic loss ℓ(Ax) = ℓlogistic(Ax) =
∑ni=1 log(1 + exp(−bi(Ax)i); and

• the support vector machine (SVM) problem

minimize 1
2
xTdiag(b)Kdiag(b)x − 1Tx

subject to xT b = 0
0 ≤ x ≤ C

with loss ℓ(x) = 1
2
xTdiag(b)Kdiag(b)x − 1Tx.

The state-of-the-art solvers for each of these prob-
lems are different: for lasso, glmnet uses coordi-
nate descent [13]; for logistic regression, SAGA is
a stochastic average gradient method [9]; and for
SVM, LIBSVM uses a sequential minimal optimiza-
tion (pairwise coordinate descent) method [6].
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NysADMM. However, all of these problems can
be addressed simply using an operator splitting
framework like the alternating directions method of
multipliers (ADMM); see Algorithm 3 and [5] for a
tutorial overview. In ADMM, the major computa-
tional challenge is the solution of an unconstrained
minimization involving a large-scale data matrix (see
Line 4 of Algorithm 3).

Algorithm 3 ADMM

1: Input: loss function ℓ, regularization r, stepsize
ρ,

2: initial z0, u0 = 0
3: for k = 0,1, . . . do
4: xk+1 = argminx{ℓ(Ax) +

ρ
2
∥x − zk + uk∥22}

5: zk+1 = argminz{r(z) +
ρ
2
∥xk+1 − z + uk∥22}

6: uk+1 = uk + xk+1 − zk+1
return x⋆ (nearly) minimizing ℓ(x) + r(x)

Our recent paper [39], with coauthor Shipu Zhao,
shows how to accelerate ADMM for our present
class of statistical learning problems using ideas from
randNLA. To improve the runtime of ADMM, re-
call that inexact ADMM, which solves Line 4 ap-
proximately with error εk at iteration k, converges
if ∑k εk <∞ [11]. To employ the randNLA toolbox,
we approximate the solution of the problem in Line 4
by a quadratic optimization problem, and solve the
resulting linear system with NyströmPCG.
More precisely, if ℓ is twice differentiable, approx-

imate the objective near the previous iterate xk as

ℓ(Ax) ≈ ℓ(Axk) + (x − xk)TAT∇ℓ(xk)

+1
2
(x − xk)TATHℓ(xk)A(x − xk),

where Hℓ is the Hessian of ℓ. With this approxi-
mation, the problem reduces to a linear system: set
rk = ρzk −ρuk +ATHℓ(xk)Axk −AT∇ℓ(xk) and find
x to solve

(ATHℓ(xk)A + ρI)x = rk.

Observe that the Hessian ATHℓ(xk)A involves the
feature matrix A inside of it, and so generally ex-
hibits fast spectral decay. Moreover, the stepsize
ρ regularizes the linear system. Interestingly, this
fact simplifies the choice of ρ for ADMM, which is
often quite challenging: as larger ρ yields an easier-
to-solve subproblem, erring on the side of large ρ is
better. Empirically, we find a choice of 10 works well
across a startlingly wide variety of problems [39].
For this method to work, in theory we must solve

to tolerance εk at iteration k, where∑k εk <∞; if the

Figure 3: NysADMM outperforms other lasso solvers
for moderate precision.

sketch size s ≈ deff(ρ), we will need ⩽ O(log(1/εk))
CG steps per iteration. On the other hand, in prac-
tice we find good performance by setting εk as the
geometric mean of the primal and dual residual (as
recommended in [5]), and by using a uniform sketch
size s = 50. If ℓ is quadratic (e.g., lasso and SVM),
Hℓ(xk) = Hℓ is constant, so we need only sketch
ATHℓA once and can reuse the sketch at each iter-
ation; otherwise (for logistic regression), we find it
suffices to re-sketch infrequently, say, every 50 iter-
ations.

This simple paradigm yields substantial speedups
over state-of-the-art solver; we saw in Figure 1 that
NysADMM significantly outperforms SAGA on ℓ1-
logistic regression. NysADMM also delivers impres-
sive numerical results on other problem classes as
well. Figure 3 shows NysADMM outperforms stan-
dard solvers such as glmnet on a large Lasso problem
instance (m = 13,000, n = 27,648), while in Figure 4
NysADMM runs almost 4× faster than LIBSVM on
a kernelized SVM instance with m = 60,000. Thus
NysADMM has potential to provide a unified frame-
work for a wide class of statistical learning problems.

3.3 Smooth optimization

Consider the problem

minimize F (x) ∶= f(x) + µ
2
∥x∥2

where f ∶ Rn → R is twice differentiable and µ > 0
is a regularization parameter. Newton’s method
minimizes this objective by solving a sequence of
quadratic optimization problems, or, equivalently,
linear systems: given iterate x, Newton’s method
computes the gradient g = ∇f(x) + µx, the Hes-
sian H = ∇2f(x) + µI, and the Newton direction
p = H−1g; the iterate is then updated as x ← x − ηp
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Figure 4: NysADMM outperforms LIBSVM on a ker-
nelized SVM problem with CIFAR-10 rf.

where η ∈ R is a step-size that can be chosen us-
ing line-search. The main computational burden
of Newton’s method is in solving the linear system
Hp = g to compute the Newton direction, which
costs O(n3) using a direct solver.

Let d⋆ ∶= supx∈S(x0) d
µ
eff(x), where S(x0) = {x ∶

F (x) ⩽ F (x0)} is the sublevel set of F at x0, and
dµeff(x) is the effective dimension with respect to µ of
the Hessian evaluated at x. Hence, the effective di-
mension of the Hessian along the optimization path
is bounded by d⋆.

NysPCG-Newton. A simple improvement for
large scale problems, which we call NysPCG-
Newton, solves for the Newton direction p using pre-
conditioned CG. Suppose we use Nyström PCG to
compute the search direction. Then if the precondi-
tioner is constructed with a sketch size s = O(d⋆),
the theory for the Nyström preconditioner in Sec-
tion 3.1 guarantees we can solve the Newton system
in a constant number of iterations. Moreover, under
appropriate conditions this method exhibits super-
linear convergence; see Figure 5 for an example.

nyssNewton. A related quasi-Newton algorithm
we call Nyström sketch-and-solve Newton (nyssNew-
ton) uses a sketch-and-solve idea to replace the Hes-
sian ∇2f(x) with a low rank approximation Ĥf in
the computation of the Newton direction. It com-
putes the following update

xk+1 = xk − ηk(Ĥfk + µI)
−1gk.

If at each iteration k we construct Ĥfk with sketch
size O(d⋆/ζ) where ζ ∈ (0,1) is a user selected pa-
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Figure 5: Convergence of the squared Newton decre-
ment on an ℓ2-logistic regression problem on the MNIST-
rotated dataset with random features (m = 62,000,
n = 8,000). NysPCG-Newton converges superlinearly on
this problem, while nyssNewton converges linearly. Both
methods were terminated when λ2

f ⩽ 10−6. NysPCG-
Newton took 75.9 seconds to run while nyssNewton took
92.7 seconds

rameter, then with high probability,

Ĥfk + µI ⪯Hk ⪯ (1 + ζ)(Ĥfk + µI).

Given this relation, if the step-size ηk is chosen via
line-search, then Theorem 5 in [35] guarantees that
– when f is self-concordant – nyssNewton returns an
ϵ-suboptimal point in O(log(1/ϵ))-iterations. That
is, nyssNewton converges linearly to the optimum
independent of the condition number (compared to
quadratic for Newton’s method or superlinearly for
NysPCG-Newton). This excellent convergence rate
comes at a relatively cheap per-iteration cost: con-
structing and factoring Ĥfk requires O(Tmvd⋆) com-
putation, so the total complexity of the algorithm is
O (Tmvd⋆ log(1/ϵ)).

3.4 Conic optimization

A related line of work uses randNLA to sketch the
decision variable and thereby reduce the memory re-
quired to run the algorithm. Examples include [38,
37]. This approach makes sense for matrix optimiza-
tion problems whose solutions are expected to be low
rank, and often results in a computational speedup
as an additional benefit. Unfortunately, the require-
ment that the sketch be linear in the decision vari-
able limits the class of algorithms that can use this
trick to primal-dual algorithms like the conditional
gradient method or [36].

In contrast, the ideas presented above in Section
3.2 sketch internal problem data (such as the con-
straint matrix or objective Hessian) in order to re-
duce the time required to perform the inner algo-
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rithm iterations, and work on a wide range of algo-
ritmic templates, from conjugate gradient to New-
ton’s method to ADMM.
A separate idea is to accelerate interior point

methods (IPMs) using a randomized linear system
solver to solve the internal Newton systems, as
in, e.g., [7]. We believe this idea, coupled with
NysPCG-Newton or nyssNewton (see Section 3.3)
has substantial potential to improve IPMs.

4 Structured test matrices
Structured test matrices can reduce the time re-
quired to compute the sketch of a matrix. Our dis-
cussion of this topic follows the excellent review in
[22]. Most randNLA methods begin by computing
a linear sketch AΩ, where Ω is a random test ma-
trix. The canonical choice takes Ω to be a Gaussian
random matrix. While Gaussian test matrices work
well in practice and facilitate analysis, they can be
expensive to store (O(nk) for Gaussian Ω ∈ Rn×k )
and compute with (O(n2k) to compute AΩ for dense
A ∈Rn×n).

In contrast, structured test matrices are de-
signed so that Ω is efficient to store and to apply.
Two classes of structured test matrices are partic-
ularly useful: randomized trigonometric transforms
(RTTs), which work best when A is dense and un-
structured, and sparse sign matrices (SSMs), which
work best when A is sparse.

RTTs have the form

Ω =
√
n

k
ΠFR,

where Π ∈ Rn×n is a signed permutation matrix, F
is a discrete trigonometric transform such as the dis-
crete cosine transform or Hadamard transform, and
R ∈ Rn×k is a random restriction operator that se-
lects k many coordinates uniformly at random. The
cost of storing a RTT is O(n log(n)), while comput-
ing AΩ costs only O(n2 log(k)): this is an exponen-
tial (in k) improvement compared to a Gaussian test
matrix! RTTs perform similarly to Gaussian test
matrices in practice, despite offering weaker theo-
retical guarantees. The major limitation of RTTs is
that they require explicit access to the columns of
A, so they are not appropriate when only a black-
box matvec oracle for A is available or when A is
distributed. Moreover, a high-quality implementa-
tion of the relevant fast trigonometric transform is
required to realize the full benefit of RTTs: most im-
plementations, e.g., the one in Matlab, exhibit com-
plexity in O(n2 log(n)) rather than in O(n2 log(k)).

SSMs take the form

Ω =
√
n

k
[ω1∣ω2∣⋯∣ωk] ∈Rn×k,

where each column ωj ∈ Rn has at most s non-
zero entries. To construct each ωj , we draw s
random signs and place them in s coordinates se-
lected uniformly at random. We may store Ω
with O(ns log(n)) numbers and can compute AΩ
in O(nsk) time. Variants of sparse embeddings dif-
fer in how they trade off sparsity compared to the
number of samples needed to ensure a high quality
sketch. SSMs are natural choices for sparse data.
Some variants can compute AΩ in O(nnz(A)) time:
much faster than the O(n2k) time required by Gaus-
sian test matrices! In contrast to RTTs, SSMs are
compatible with matvec oracle access to A. How-
ever, unless the matvec oracle has special structure,
computing AΩ for an SSM may be be no cheaper
than using a Gaussian test matrix. The downsides
of sparse sign matrices are similar to those of RTTs:
they require careful implementation to extract their
full computational benefits, particularly in the dis-
tributed setting.

For more discussion, see the survey [22, Sections 9
and 10]; or for pseudocode implementations, see the
appendix of [31].

5 Conclusion
We have seen how fundamental innovations in ran-
domized numerical linear algebra yield important
primitives for speeding up optimization problems,
including linear system solvers, smooth optimiza-
tion, structured composite problems such as lasso,
regularized logistic regression, and SVMs, and even
interior point methods. The methods presented
here demonstrate potential speedups of 10-100x over
standard approaches. Much more work remains to
realize the promise of randNLA throughout opti-
mization!
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1 Introduction
The structure of an optimization problem plays an
important role in designing efficient algorithms. A
common structure, motivated by empirical risk min-
imization (ERM), is the finite sum, that is, an opti-
mization problem of the form

min
x∈Rd

{f(x) def= 1

n

n

∑
i=1
fi(x)}, (1)

where the functions fi ∶ Rd → R. Much has been
written about the complexity of stochastic and de-
terministic algorithms for solving (1) under various
general assumptions on f , such as smoothness and
convexity [49, 11, 25, 15, 26, 10, 21, 7, 30, 29, 42,
19, 20, 31, 50, 40].
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CIFAR-5m, Random Features

SGD n = 4,000
Predicted n = 4,000
SGD 6,000
Predicted, 6,000
SGD 10,000
Predicted, 10,000
SGD 20,000
Predicted, 20,000
Streaming SGD 
Streaming Predicted

Figure 1: Single runs of SGD vs. predicted dy-
namics (solid line) on standardized CIFAR-5M [41]
with car/plane class vector (1,000,000 samples); a stan-
dardized ReLU, random features model was applied with
increasing number of samples n and fixed d = 6000. The
predicted behavior, denoted by “predicted” (solid lines),
without running SGD, matches the performance of sin-
gle runs of SGD for finite n and streaming (n =∞). See
details in [47].

Motivated in part by the rise in machine learn-
ing, optimization research has focused on weakening
these assumptions, as the problems of interest are
both nonconvex and nonsmooth. This has led to
tight upper bounds on complexity that match in-
formation theoretic lower bounds for very general
finite-sum problems [4, 43, 23, 24], and yet in spite
of this, there exists an enormous gap between these
theoretical guarantees and observed performance in
machine learning.

Indeed, even in the smooth, convex setting, there
is a missing component in our understanding of finite
sum problems in machine learning. One possibility
is simply the size of the finite sums. An overarch-
ing trend in machine learning is to scale problems
up in terms of model parameter count and data set
size (see, for example, the literature on scaling laws
[32]). In short, machine learning problems are high-
dimensional.

Another aspect of machine learning problems, be-
sides that they are high dimensional, is that they
are all stochastic: the data are random, the learning
algorithms are random, and the model initialization
is random. We propose that this trifecta of ran-
domness combined with high-dimensionality are the
missing structure from a theory of optimization for
machine learning.

The purpose of this article is to survey the recent
advances in developing a framework that incorpo-
rates high-dimensionality into analyzing stochastic
learning algorithms on a ℓ2-regularized least squares

problem [46, 47, 35]. The main idea, discussed
in detail in Section 2, is to import mathematical
ideas commonly used in random matrix theory. The
resulting framework yields predictions for learning
curves that are amenable to analysis and often ex-
actly reproduce the behavior seen by popular algo-
rithms (e.g., stochastic gradient descent (SGD) [49])
on real data sets (see e.g., Figure 1 and Figure 4). Fi-
nally we illustrate how one can use these predictions
to draw important insights on average-case complex-
ity and parameter selections such as learning rate,
momentum parameter, and batch size (Section 4).

The use of tools from high-dimensional probability
and random matrix theory for simplifying the anal-
ysis of optimization algorithms is a relatively new
area in the machine learning literature [14, 18, 9,
17, 39, 51]. It has been used to model phenomena
that, up until this point, had only been observed
in deep neural networks (e.g., double descent), but
which through random matrix theory are revealed
to be an artifact of high-dimensional data [8, 22, 28,
38, 36, 2, 1, 53]. Beyond this, statistical assump-
tions to reduce complexity of analyzing algorithms
were notably used in the compressed sensing com-
munity (see, for example, [12, 44]).

2 Problem Set-Up

In this section, we develop ideas from random matrix
theory for incorporating high-dimensionality into
the analysis of learning algorithms. To formalize the
analysis, we define the ℓ2-regularized least squares
problem:

argmin
x∈Rd

{f(x) def= 1

2
∥Ax − b∥2 + δ

2
∥x∥2

=
n

∑
i=1

1

2
((aix − bi)2 +

δ

n
∥x∥2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
def= fi(x)

}. (2)

The design matrix A is of size n × d, with the idea
that both the data size (n) and the model complex-
ity d are big. The fixed parameter δ > 0 controls
the regularization strength and it is independent of
n and d. We do not require that n and d are pro-
portional. Instead, we need the following:

Assumption 1 (Polynomially related). There is an
α ∈ (0,1) so that

dα ⩽ n ⩽ d1/α.

The data matrixA ∈ Rn×d and the labels bmay be
deterministic or random; we formulate the theorems
for deterministic A and b in (2) satisfying various
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MNIST (full), slope = 0.06

Figure 2: Maximum off-diagonal entry of the re-
solvent for CIFAR-5M [41] and MNIST [34] data
sets with features d fixed (3072 and 784, respectively),
varying samples n = 2k for k = 5,6,⋯,12. Random fea-
tures (RF) model was employed with n0 = 2000. In the
MNIST (99.99 percentile) data set large resolvent out-
liers were removed; when outliers not removed, MNIST
data set does not satisfy the off-diagonal resolvent con-
dition (5). For the other data sets, the off-diagonal re-
solvent condition is satisfied. The theory still works well
for MNIST without modification (see Figure 4), which
suggests that (5) could be weakened.

assumptions, and in the applications of these theo-
rems to statistical settings, we shall give examples
of random A and b which satisfy these assumptions.
These assumptions are motivated by the empirical
risk minimization (ERM) problem, and in particu-
lar the case where the augmented matrix [A ∣ b] has
rows that are independent and sampled from some
common distribution (see Section 2.1 for details).
We also note that the problem (2) is homogeneous,
in that if we simultaneously divide A, b and

√
δ by

any desired scalar, we produce an equivalent opti-
mization problem. As such, we may also adopt the
following normalization convention without loss of
generality.

Assumption 2 (Data–target normalization).
There is a constant C > 0 independent of d and n
such that the spectral norm of A is bounded by C
and the target vector b ∈ Rn is normalized so that
∥b∥2 ⩽ C.

2.1 Detour into random matrix theory

We are looking for deterministic assumptions on
(A,b) that capture the combination of the high-
dimensionality of the problem with the intrinsic ran-
domness seen in a machine learning setup.

As a motivating test case, consider the Gaussian
design case A = Z

√
Σ for a covariance matrix Σ.

For the target, consider the generative model with
noise b =Ax̃0 + η for x̃0 and η independent of A.

The Gaussian matrix A enjoys some spectacular
distributional invariances. Most relevant here, it sat-
isfies that for any n×n orthogonal matrix O the dis-
tribution of OA is the same as the distribution of A.
It follows as a consequence that in a singular value
decomposition of A = U

√
ΛV T , the matrix U is in-

dependent of Λ and V and moreover it can be taken
uniformly distributed on the orthogonal group. For
non-identity covariance Σ, the same is not generally
true of the matrix of right–singular vectors V .

This means that the left singular vectors of A re-
veal nothing on either x̃ or Σ. It is, however, a type
of optimization structure; and we shall further il-
lustrate that this uniform distribution has profound
consequences for the behavior of algorithms which
operate on batch subproblems (in particular mini-
batch SGD).

On the other hand, this is far too much to ask
for a general design A, even for one with strong
statistical assumptions such as independent identi-
cally distributed subgaussian rows. We would like
to generalize this assumption and ideally identify a
deterministic condition which captures some of the
consequences of this uniform distribution of eigen-
vectors.

One of the key tools in random matrix theory,
especially in the theory of universality1, is the resol-
vent of a matrix M defined by

R(z;M) = (zI −M)−1 z ∈ C ∖ σ(M), (3)

with σ(M) its spectrum.

Given a singular value decomposition for A =
U
√
ΛV T , this can be computed in terms of the sin-

gular vectors by

R(z;AAT ) = U(zI −Λ)−1UT

and R(z;ATA) = V (zI −Λ)−1V T .
(4)

Hence in the case of the Gaussian design, the resol-
vent R(z;AAT ) factorizes as a conjugation. More-
over U is independent of Λ and U is uniformly dis-
tributed over the orthogonal group.

1Universality is the property of random matrices by which
eigenvalue and eigenvector statistics are common across all
large matrices having a given first and second moment struc-
ture (and sometimes 3rd and 4th) in their entries. For ex-

ample, sample covariance matrices, in which A =W
√
Σ for

a matrix of iid mean 0 variance 1 entries, are known to have
many common spectral properties.
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Thus the off-diagonal and diagonal entries of
R(z;AAT ) can be estimated by

R(z;AAT )ii ≈
1

n
trR(z;Λ)

and ∣R(z;AAT )ij ∣ ≲ n−1/2.
(5)

See Assumption 3 for a precise definition of ∼ and ≲.
Further, these estimates hold with very high proba-
bility and uniformly over all i, j. The same does not
hold for the other resolvent R(z;ATA) on account
of the non-uniform distribution of its singular vec-
tors (save for in the special case that Σ is scalar).
See Figure 2 for the behavior of the off-diagonal en-
tries (5) on some popular data sets.
The property (5) generalizes to many other classes

of random matrices with independent rows. This
leads us to pose a family of assumptions on A and
b which encode some of the flavor of the uniform
distribution of left singular vectors of A.

Assumption 3. Suppose Ω is a rectangle (contour)
in the complex plane that encloses the spectrum of
AAT with a diameter independent of n and d. Sup-
pose there is a θ ∈ (0, 1

2
) for which

1. max
z∈Ω

max
1⩽i⩽n

∣eTi R(z;AAT )b∣ ⩽ nθ−1/2.

2. max
z∈Ω

max
1⩽i≠j⩽n

∣eTi R(z;AAT )eTj ∣ ⩽ nθ−1/2.

3. max
z∈Ω

max
1⩽i⩽n

∣eTi R(z;AAT )ei − 1
n
trR(z;AAT )∣ ⩽

nθ−1/2.

The latter two assumptions thus encode, in a
weakened form, a consequence of the uniform distri-
bution of left-singular vectors. The first assumption
additionally adds the interaction of the data matrix
with the target vector b. For matrices A whose en-
tries are standard Gaussians and targets b which
come from some ground truth signal plus noise, As-
sumption 3 can easily be checked to hold. This as-
sumption effectively shows that individual samples
have a controlled influence on solving the minimiza-
tion problem, which in some sense quantifies that we
are dealing with a high-dimensional problem.
The relevance of the contour enclosing the spec-

trum is that this allows us to pass, by contour in-
tegration, from resolvent estimates to estimates of
other matrix functions, such as the ones that ap-
pear in describing the trajectories of first order al-
gorithms. For random matrices, there is rarely a spe-
cial contour of importance, and moreover the com-
plexity of checking that the bound on a contour is
roughly the same as checking the bound holds at any
z with a minimum separation from the spectrum of
AAT .

2.2 Algorithmic setup

Stochastic learning algorithms and their momentum
variants are the workhorses in machine learning due
to their relatively cheap computational cost and sim-
ple implementations.

We solve the ℓ2-regularized least-squares prob-
lem (2) using stochastic learning algorithms, and in
particular, stochastic gradient descent (SGD) with
learning rate γk. For an initial vector x0 ∈ Rd, we de-
fine a sequence of SGD iterates {xk}∞k=0 which obey
the recurrence,

xk+1 = xk − γk∇fik(xk)
= xk − γkATeike

T
ik
(Axk − b) − γkδ

n
xk .

(6)

The rows {i1, i2, . . .} are chosen uniformly at ran-
dom, and thus the batch size is one. The work of
[45] suggests that under similar (albeit more restric-
tive) assumptions, minibatch SGD with batch-size
β = o(n) produces the same dynamical behavior as
SGD after sampling single-batch SGD at iteration
counts βN. Therefore, we content ourselves with
the simpler case with batch size equal to one. In
Section 4, we will explore the effects of large batches
on SGD and its momentum variant, but for now, we
consider only β = o(n).

As we want to give descriptions of the dynamics of
SGD which are consistent across increasing dimen-
sions, we suppose that γk has a smoothly varying
schedule. Specifically, we suppose:

Assumption 4. There is a continuous bounded
function γ ∶ [0,∞) → [0,∞) such that γk = γ(k/n)
for all k. As such

γ̂
def= sup

t
γ(t) <∞.

Although the classic Robbins-Monro γk = 1
k

does
not technically fit into this framework, for prob-
lems in which Assumptions 2 and 3 are satisfied
(or more generally where some non-trivial fraction
of the samples are needed to commence learning),
the classic 1/k rate is often too slow to produce any
practically relevant results. Moreover, from a the-
oretical point of view, such a rate produces a be-
havior similar to gradient flow (see (10)), and it
could be viewed as effectively non-stochastic. In
our high-dimensional setting, a suitable analogue
of the Robbins-Monro schedule that does satisfy
our assumptions and yields nontrivial behavior is
γk = n

n+k =
1

1+k/n .

As for the initialization x0, we need to suppose
that it does not interact too strongly with the right
singular-vectors of A. In the spirit of Assumption 3,
it suffices to assume the following:
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Assumption 5. Let Ω be the same contour as in
Assumption 3 and let θ ∈ (0, 1

2
). Then

max
z∈Ω

max
1⩽i⩽d

∣eTi R(z;ATA)x0∣ ⩽ nθ−1/2.

Note that, as a simple but common case, this as-
sumption is surely satisfied for x0 = 0. In principle,
this assumption is general enough to allow for x0

which are correlated with A in a nontrivial way, but
we do not have an application for such an initial-
ization. For a large class of nonzero initializations
independent from (A,b), Assumption 5 is satisfied,
as a corollary of Assumption 3:

Lemma 2.1. Suppose that Assumption 3 holds with
some θ0 ∈ (0, 12) and that x0 is chosen randomly,
independent of (A,b), and with independent coordi-
nates in such a way that for some C independent of
d or n

∥Ex0∥∞ ⩽ C/n
and max

i
∥(x0 −Ex0)i∥2ψ2

⩽ Cn2θ0−1.

Assumption 5 holds with any θ > θ0 on an event of
probability tending to 1 as n→∞.

Note that this assumption allows for deterministic
x0 having maximum normO(1/n), as well as iid cen-
tered subgaussian vectors of Euclidean norm O(1).

2.3 Examples of data matrix and target

We highlight two examples for which the data matrix
A and target vector b satisfy Assumption 3 (proofs
found in [47, Lemma 1.3 and Theorem 1.7]). In both
cases below, we take the initialization vector x0 to
be iid centered subgaussian with E [∥x0∥2] = R̂ for
R̂ > 0. Assumption 5 holds for this initialization
vector.
Sample covariance matrices and generative mod-

els. Suppose that Σ ⪰ 0 is a d×d matrix with trΣ = 1
and ∥Σ∥ ≤M/

√
d <∞. The data matrix A is a ran-

dom matrix with A = Z
√
Σ where Z is an n×d ma-

trix of independent, mean 0, variance 1 entries with
subgaussian norm at most M < ∞, and we assume
n ≤ Md. Finally suppose that b satisfies a genera-
tive model, that is b = Aβ + η for β,η iid centered
subgaussian satisfying ∥b∥2 = R and ∥η∥2 = R̃n

d
for

some R̃,R > 0. For data matrix A and target vector
generated this way, Assumption 3 holds.
Random features model of a linear ground truth.

We follow the set-up based on [38, 1]. This model en-
compasses two-layer neural networks with a squared
loss, where the first layer has random weights and
the second layer’s weights are given by the regres-
sion coefficients. Suppose the n × n0 data matrix

X = ZΣ1/2/√n0 for an iid standard Gaussian Z
and the covariance matrix Σ satisfies 1/n0 tr(Σ) = 1
and ∥Σ∥ ≤ C for some C > 0. We also suppose that
W is an n0 × d iid feature matrix having standard
Gaussian entries and independent of Z so that XW
is a matrix whose rows are standardized. We now
apply an activation function entry-wise. The activa-
tion function σ satisfies for C0,C1 ≥ 0

∣σ′(x)∣ ≤ C0e
C1∣x∣, for all x ∈ R

and for all Z ∼ N(0,1), E [σ(Z)] = 0.
(7)

We now transform the data X ∈ Rn0×d by putting

A = σ(XW /
√
n0) ∈ Rn×d.

For the target vector b, we use a linear ground truth
model, that is, b =Xβ + ηw with β,w independent
isotropic subgaussian vectors with E [∥β∥2] = 1/n0
and E [∥w∥2] = 1 and η bounded, independent of n.
Assumption 3 holds for A and b generated this way.

3 Predicting learning curves
A benefit of working in high-dimensional optimiza-
tion is that seemingly challenging tasks such as un-
derstanding the noise produced by SGD, become
much simpler due to concentration effects. In fact,
the entire training path taken by SGD concentrates
around a deterministic function. The function gives
a simple description of the exact learning curve of
SGD, depending only on the spectrum of AAT , the
target b, and initial x0. In this way, one can predict
the training behavior of SGD without ever running
SGD. The idea hinges on exploiting the trifecta of
randomness in the problem and high-dimensionality
through concentration of measure. Moreover, these
predictions are amenable to analysis and one can
draw important insights on typical computational
complexity and parameter selection policies (see Sec-
tion 4).

In a high-dimensional setting, this empirical risk
concentrates around a deterministic path Ψt. To de-
fine this path, we introduce the integrated learning
rate Γ and kernel K, for any d × d matrix P ,

Γ(t) = ∫
t

0
γ(s) ds, and

K(t, s;P ) = 1
n
γ2(s) tr(P (∇2L )

× exp( − 2(∇2L + δId)(Γ(t) − Γ(s)))).

(8)

The path Ψt satisfies the Volterra integral equa-
tion:

Ψt =L (X gf
Γ(t)) + ∫

t

0
K(t, s;∇2L )Ψs ds. (9)
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Figure 3: Concentration of SGD on training loss and expected risk, on a Gaussian random ℓ2-regularized
least-squares problem where β ∼ N(0, Id) is the ground truth signal and a generative model b =Aβ+η where entries
of η iid standard normal with ∥η∥22 = 2.25, n = 0.9d with ℓ2-regularization parameter δ = 0.1, SGD was initialized at
x0 ∼ N(0,4Id) (independent of A, β); an 80% confidence interval (shaded region) over 10 runs for each n, a constant
learning rate for SGD was applied, γ = 0.8. For expected risk, the samples a generated from same covariance as A.
More volatility in the expected risk across runs even for large n in comparison to the training error (left and center).
The predicted Ωt matches the performance of SGD on the expected risk even for a single run (right).

The quantity X gf
t is gradient flow which is the so-

lution to the differential equation

dX gf
t = −∇f(X

gf
t ) dt, X gf

0 = x0. (10)

For the ℓ2−regularized least squares problem, the
solution to gradient flow is explicitly solvable in
terms of x0, target b, and eigenvalues of ∇2L . Con-
sequently, due to (9) and as Theorem 3.1 will show,
the training dynamics of SGD are completely pre-
dictable solely from the spectrum of ATA, target b,
and the initialization x0.
But one can do more. Generally, one wants to

study not only the training dynamics but also the
generalization performance of SGD, that is, how well
the algorithm performs on unseen data. In this
sense, we need to be able to evaluate the iterates
of SGD, applied to f (2), on other statistics. We
will focus our attention on quadratics.

Definition 3.1. A function R ∶ Rd → R is quadratic
if it is a degree-2 polynomial or equivalently if can
be represented by

R(x) = 1
2
xTTx +uTx + c

for some d × d matrix T , vector u ∈ Rd and scalar
c ∈ R. For any quadratic, define the H2–norm:

∥R∥H2
def= ∥∇2R∥ + ∥∇R(0)∥ + ∣R(0)∣
= ∥T ∥ + ∥u∥ + ∣c∣.

(11)

For the learning path to concentrate on other
quadratic statistics, we require an additional as-
sumption in the same spirit as Assumption 3:

Assumption 6 (Quadratic statistics). Suppose R ∶
Rd → R is quadratic, i.e. there is a symmetric matrix

T ∈ Rd×d, a vector u ∈ Rd, and a constant c ∈ R so
that

R(x) = 1
2
xTTx +uTx + c. (12)

We assume that R satisfies ∥R∥H2 ≤ C for some C
independent of n and d. Moreover, we assume the
following (for the same Ω and θ) as in Assumption
3:

max
z,y∈Ω

max
1⩽i⩽n

∣eTi AT̂ATei − 1
n
tr(AT̂AT )∣ ⩽ ∥T ∥n−ϵ

where

⎧⎪⎪⎨⎪⎪⎩

T̂ = R(z)TR(y) +R(y)TR(z),
R(z) = R(z;ATA)

(13)

This assumption ensures that the quadratic R has a
Hessian which is not too correlated with any of the
left singular–vectors of A. Establishing Assumption
6 can be non–trivial in the cases when the quadratic
has complicated dependence on A. In simple cases,
(especially for the case of the empirical risk and the
norm) it follows automatically from Assumption 3.

Lemma 3.1. Suppose that R satisfies (12) with T =
p(ATA), where p is a polynomial having bounded co-
efficients, and suppose u and c are norm-bounded in-
dependently of n or d. Then supposing Assumptions
2 and 3 for some θ0 ∈ (0, 12), for all n sufficiently
large and for any θ > θ0, Assumption 6 holds.

Thus for example R =L will satisfy Assumption 6,
as will the simple Euclidean vector norm R = ∥ ⋅ ∥2.
The trajectory R(xt) concentrates around

Ωt =R(X gf
Γ(t)) + ∫

t

0
K(t, s;∇2R)Ψs ds. (14)

Note the trajectories of gradient flows can be com-
puted explicitly.

Finally the concentration theorem is the following:
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Figure 4: SGD vs Theory on MNIST: MNIST (60000 × 28 × 28) images. Random features model on MNIST
used with n = 4000 images, random features d = 2000, and n0 = 28 × 28 was trained with one run of SGD (middle)
for various learning rates and regularization parameter 0.01; entries of the random features Wij ∼ N(0,1) and
a normalized ReLu activation function σ(⋅) = (max{0, ⋅} − a)/b was applied. The Volterra equation matches the
dynamics of the training loss (least-squares), L, even with only one run of SGD. The log(eigenvalues) of the covariance
of the MNIST dataset and the random features matrix used in the regression displayed (left). The expected risk,
R(x) = 1

2
E[(b − xTσ(xiW ))2] where xi is an image from the MNIST test set, follows the predicted behavior Ωt.

Both the predicted Ψt and Ωt match the performance of SGD in this non-idealized setting.

Theorem 3.1 (Concentration of SGD). Suppose n
and d are related by Assumption 1. Suppose the
ℓ2-regularized least-squares problem (2) satisfies As-
sumptions 2 and 3 where n ≥ dε̃ for some ε̃ > 0. Sup-
pose the learning rate schedule γ satisfies Assump-
tion 4, and the initialization x0 satisfies Assumption
5. Let R ∶ Rd ↦ R be any quadratic statistic satis-
fying Assumption 6. Further assume that R and L
have bounded ∥R∥H2 and ∥L ∥H2 independent of n
or d, for some C ′ sufficiently large. For any deter-
ministic T > 0 and any D > 0, there is a C > 0 such
that

Pr [ sup
0⩽t⩽T

∥(L (x⌊tn⌋)R(x⌊tn⌋)
) − (Ψt

Ωt
)∥ > d−ε̃/2 ∣A,b,x0]

≤ C ′d−D,

where Ωt solves (14) and xt are the iterates of SGD.

A formal proof of Theorem 3.1 can be found in [47,
Theorem 1.4]. The functions Ψt and Ωt can be
viewed as the expected training loss and general-
ization error, respectively. Theorem 3.1 then shows
concentration around the mean. We remark that to
solve (8) we need as input L (X gf

Γ(t)) which can be

computed using (10).
The solution of Ψt can be found by repeatedly con-

volving the forcing term L (X gf
Γ(t)) with the kernel

K (provided supt≥0 sups≥0K(t, s;∇2L ) is bounded
[27]). Moreover, numerical approximations to (8)
can be found by taking a large but finite number of
convolutions in the expression above. The bounded-
ness of this solution corresponds precisely to learning
rate choices for which SGD is convergent.
In the case of constant learning rate γ(s) ≡ γ,

more can be said. The Volterra equation (8) is of
convolution–type, and in fact is a special case of the

renewal equation [5] (allowing for defective and ex-
cessive variants). Specifically, the expression in (9)
simplifies to

Ψt =L (X gf
Γ(t))

+ γ
2

n
∫

t

0
tr ((ATA)2e−2(A

TA+δId)(t−s))Ψs ds.
(15)

In addition to fixed point algorithms, one can also
use Laplace transform techniques. These solutions
to (15) can be analyzed explicitly for convergence
guarantees and rates of convergence, see [46, 45].
As a simple example writing K(t, s;P ) = K(t −
s;P ), the convergence of (15) occurs precisely when

∫
∞
0 K(t;∇2L ) dt ⩽ 1.2

Under the assumption that γ(s) stabilizes, i.e.
γ(s) → γ as s → ∞, we may still characterize
the eventual behavior of the solution. In the case
that R represents the population risk, the difference
Ωt−R(X gf

Γ(t)) gains the interpretation of the excess

risk of SGD over gradient flow. On taking t → ∞,
this converges to the excess risk of the SGD estima-
tor over the ridge regression estimator:

Theorem 3.2. If γ(t) → 0 but Γ(t) → ∞ as
t → ∞ (c.f. the Robbins-Monro setting), then Ωt −
R(X gf

Γ(t))ÐÐ→t→∞
0. If, on the other hand, γ(t)→ γ̃ >

0, where the limiting learning rate satisfies

γ̃ < 2( 1
n
tr((ATA)2(ATA + δId)−1))

−1
, (16)

2See [5, Chapter V] for a general discussion. In the case
that the norm is exactly 1, this remains true as it is a special
case of the Blackwell renewal theorem. When the norm is
larger than 1, in the event that the empirical risk of gradient
flow is bounded away from 0, the training loss is divergent.
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then with Ψ∞ given by the limiting empirical risk:

Ψ∞ =L (X gf
∞)×(1−

γ̃

2n
tr((∇2L )2(∇2L +δId)

−1))
−1

the limiting excess risk of SGD over ridge regression
is given by

Ωt −R(X gf
Γ(t))

ÐÐ→
t→∞

γ̃

2n
Ψ∞ × tr((∇2R)(∇2L )(∇2L + δId)

−1).

Examples of statistics. We give some common
statistics that illustrate the versatility of our set-up.
One important quadratic statistic which satisfies

all assumptions in Section 2.3 is R(⋅) = 1
2
∥ ⋅ −β∥2

where β is the unknown, ground truth signal.
Another common statistic in the standard linear

regression set-up is the population risk. We first
address the in-distribution set-up, where the data
is drawn from the same distribution as the popu-
lation. Let A be generated by taking n indepen-
dent d-dimensional samples from a centered distri-
bution Df with feature covariance Σf ∈ Rd×d, that
is Σf = E [aaT ], where a ∼ Df . We suppose a new
data point (a, b) is drawn from a distribution D on
Rd ×R with the property that E [b ∣a] = βTa where
(a, b) ∼ D and the data a ∼ Df . As before, β is
the ground truth signal. The vector xt generated by
SGD represents an estimate of β, and the population
risk is

R(xt)
def= 1

2
E [(b −xTt a)2 ∣xt], (17)

where (a, b) ∼ D.
In the out-of-distribution case, the data matrix A

is generated using one distribution but the sample
(a, b) ∼ D is not drawn from the same distribution
as A, that is, a ∼ D̂f ≠ Df but still E [b∣a] = βTa.
Finally, for random features with a linear ground

truth, we would take

R(xt)
def= E [(b −xTt σ(XiW /

√
n0))2 ∣xt,W ]. (18)

All these examples are quadratic statistics for which
Theorem 3.1 applies.

4 Average-case Complexity & Param-
eter Selections

The dynamics of training curves for generic objective
functions, in general, are quite complicated. How-
ever, as we have seen, in the case of ℓ2-regularized
least squares problem under high-dimensionality, the
dynamics for stochastic learning algorithms are sim-
ple. As such, one can go further and get additional

information about the performance of these algo-
rithms. In this section, we use the predictions of the
exact training dynamics to draw important insights
on typical computational complexity and parameter
selection (e.g., learning rate, batch size, and momen-
tum parameters). We will focus our attention on the
widely used stochastic gradient descent algorithm
with momentum (SGD+M) on the ℓ2-regularized
least squares problem with regularization parameter
δ = 0 (e.g., minx 1/2∥Ax+b∥2). Mini-batch SGD+M
is defined by selecting uniformly at random a sub-
set Bk ⊆ {1,2,⋯, n} of cardinality β and making the
update

xk+1 = xk − γ ∑
i∈Bk

∇fi(xk) +∆(xk −xk−1)

= xk − γATPk(Axk − b) +∆(xk −xk−1),

where Pk
def= ∑

i∈Bk

eie
T
i ,

(19)

with Pk a random orthogonal projection matrix and
ei the i-th standard basis vector. Here γ > 0 is the
learning rate parameter, ∆ is the momentum pa-
rameter, and the function fi is the i-th element of
the sum in (2). Note we are only considering the
constant learning rate and momentum setting. We
define the batch fraction ζ as the ratio of β/n.
When the stochastic gradient in (19) is replaced

with the full-gradient ∇f(x) and the hyperparame-
ters are chosen optimally, the resulting algorithm is
the celebrated heavy-ball momentum (a.k.a. Polyak
momentum) [48]. The optimal learning rate and mo-
mentum parameters are explicitly given by

γ = 4

(
√
σ2
max +

√
σ2
min)2

and ∆ =
⎛
⎝

√
σ2
max −

√
σ2
min√

σ2
max +

√
σ2
min

⎞
⎠

2

.

(20)

It is well-known that heavy-ball is an optimal algo-
rithm on the least squares problem in that it con-
verges linearly at a rate of O(1/

√
κ).

In the influential work of [52], the authors em-
pirically show that SGD+M significantly improves
training performance of deep neural networks. De-
spite its wide usage in machine learning practice, our
understanding of it is more narrow. It has been hy-
pothesized that SGD+M improves training because
it is employed on a large batch of a data set [33],
thereby emulating the speed-up one sees in full-batch
settings. For many learning problems, the “large
batch” setting is often paired with high-dimensional
problems, meaning there are many samples (and
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likely also many features to have interesting behav-
ior). There have been some recent works in proving
that for sufficiently large batch sizes SGD+M does
achieve O(1/

√
κ) [13, 16]; see also [29, 37, 3]. We

can go further and find the correct batch size depen-
dency in the high-dimensional regime.
First, we address how the batch effects the train-

ing dynamics.

Theorem 4.1 (Concentration of mini-batch mo-
mentum). Suppose the assumptions of Theorem 3.1
hold. For any deterministic T > 0 and any D > 0,
there is a C > 0 such that

Pr [ sup
0⩽k⩽T

∣L (xk) −Ψk∣ > d−ε̃/2 ∣A,b,x0] ≤ C ′d−D,

where Ψk solves a discrete convolution-type Volterra
equation

Ψk+1 =L (xGD+M(γζ)
k+1 )+

k

∑
t=0
K(k − t;∇2L )Ψt. (21)

Here K(k) is a kernel completely determined by the

spectrum of ∇2L and {xGD+M(γζ)
k } are the iterates

generated by running full-batched momentum (i.e.,
ζ = 1 in (19)) with learning rate given by ζγ and
momentum parameter ∆.

The expression for (21) can be viewed as a dis-
crete convolution-type Volterra equation with forc-

ing term L (xGD+M(γζ)
k ) and kernel K(t;∇2L ).

The forcing term, F (k) = L (xGD+M(γζ)
k ) repre-

sents the mean (with respect to expectation over the
mini-batches) behavior of SGD+M. For small learn-
ing rates γ, the forcing term controls the dynamics
of Ψk. We denote the dominant term in F (k) by
λmax(γ,∆, ζ), that is F (k) = O(λkmax). Specifically,

λj
def=
−2∆ +Ω2

j +
√

Ω2
j(Ω2

j − 4∆)

2
,

where Ωj
def= 1 − γζσ2

j +∆,

λmax
def= max

1≤j≤n
∣λj ∣, and σ2

j , eigenvalue of AAT .

(22)
On the other hand, the kernel term, or convolution

in (21), ∑kt=0K(k−t,∇2L )Ψt, is due to the inherent
stochasticity generated by uniformly at random se-
lecting indices. The presence of Ψt (training loss) in
this term is due to the fact that the noise generated
by the k-th stochastic gradient is proportional to Ψt,
and the function K(k − t) represents the progress of
the algorithm in sending this extra noise to 0. We
note that the kernel K(k−t) in (21) scales quadrati-
cally in the learning rate γ. Hence for large learning

rates, the kernel dominates the decay behavior of
Ψk.

There are also some key relationships between
Theorem 3.1 (batch sizes ζ → 0) and Theorem 4.1,
notably that (when ∆ = 0), gradient flow in the forc-
ing term of (9) becomes gradient descent (21) – dis-
crete gradient flow. A similar discretization is ob-
served in the kernel with an integral replaced by a
summation.

4.1 Convolution Volterra analysis

We begin by establishing sufficient conditions for the
convergence of the solution to the Volterra equation
(21), a special case of the renewal equation ([6]).
Let us translate (21) into the form of the renewal
equation as follows:

ψ(t + 1) = F (t + 1) + (K̃ ∗ ψ)(t), (23)

where (f ∗ g)(t) = ∑∞k=0 f(t − k)g(k). Let the kernel
norm be ∥K̃∥ = ∑∞t=0 K̃(t). By [6, Proposition 7.4],
we see that ∥K̃∥ < 1 is necessary for our solution to
the Volterra equation to be convergent. Indeed, we
have the following result.

Proposition 4.1. If the norm ∥K̃∥ < 1, the algo-
rithm is convergent in that

Ψ∞
def= lim

k→∞
Ψk =

lim
k→∞

L (xGD+M(γζ)
k )

1 − ∥K̃∥
. (24)

Proposition 4.1 formulates the limit behaviour of
the objective function in both the over-determined
and the under-determined cases of least squares.
When under-determined, the limiting loss value of

L (xGD+M(γζ)
k ) = 0 and the limiting Ψ∞ is 0; other-

wise the limiting loss value is strictly positive. The
result (24) only makes sense when the noise term K
satisfies ∣∣K ∣∣ < 1; the next proposition illustrates the
conditions on the learning rate and the trace of the
eigenvalues of AAT such that the kernel norm is less
than 1.

Proposition 4.2 (Convergence threshold). Under
the learning rate condition γ < 1+∆

ζσ2
max

and trace

condition (1−ζ)γ
1−∆ ⋅ 1

n
tr(AAT ) < 1, the kernel norm

∥K̃∥ < 1 , i.e., ∑∞t=0 K̃(t) < 1.

The learning rate condition quantifies an upper
bound of good learning rates by the largest eigen-
value of the covariance matrix σ2

max, batch fraction
ζ, and the momentum parameter ∆. The trace con-
dition illustrates a constraint on the growth of σ2

max.
Moreover, for a full batch gradient descent model
(ζ = 1), the trace condition can be dropped and we
get the classical learning rate condition for gradient
descent.
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4.2 The Malthusian exponent and com-
plexity

The rate of convergence of Ψk is essentially the worse
of two terms – the forcing term F (t) and a dis-
crete time convolution ∑kt=0K(k − t;∇2L )Ψt which
depends on the kernel K. Intuitively, the forcing
term captures the behavior of the expected value
of SGD+M and the discrete time convolution cap-
tures the slowdown in training due to noise created
by the algorithm. Note that F (k) is always a lower
bound for Ψk, but it can be that Ψk is exponen-
tially (in k) larger than F (k) owing to the convolu-
tion term. This occurs when something called the
Malthusian exponent, denoted Ξ, of the convolution
Volterra equation exists. The Malthusian exponent
Ξ is given as the unique solution to

γ2ζ(1 − ζ)
∞
∑
t=0

ΞtK(t;∇2L ) = 1, if solution exists.

(25)
The Malthusian exponent enters into the complexity
analysis in the following way:

Theorem 4.2 (Asymptotic rates). The inverse of
the Malthusian exponent always satisfies Ξ−1 > Λ for
finite n. Moreover, for some C > 0, the convergence
rate for SGD+M is

Ψk −Ψ∞ ≤ Cmax{λmax,Ξ
−1}k

and lim
t→∞
(Ψk −Ψ∞)1/k =max{λmax,Ξ

−1}.
(26)

Thus to understand the rates of convergence, it
is necessary to understand the Malthusian exponent
as a function of γ and ∆.

4.3 Two regimes for the Malthusian ex-
ponent

On the one hand, the Malthusian exponent Ξ comes
from the stochasticity of the algorithm itself. On
the other hand, λmax(γ,∆, ζ) is determined com-
pletely by the problem instance information — the
eigenspectrum of AAT . (Note we want to empha-
size the dependence of λmax on the learning rate,
the momentum parameter, and the batch fraction).
Let σ2

max and σ2
min denote the maximum and min-

imum nonzero eigenvalues of AAT , respectively.
For a fixed batch fraction, the optimal parameters
(γλ,∆λ) of λmax are

γλ =
1

ζ
( 2√

σ2
max +

√
σ2
min

)
2

and ∆λ = (
√
σ2
max −

√
σ2
min√

σ2
max +

√
σ2
min

)
2

.

(27)

In the full batch setting, i.e. ζ = 1, these optimal pa-
rameters γλ and ∆λ for λmax are exactly the Polyak
momentum parameters (20). Moreover, in this set-
ting, there is no stochasticity so the Malthusian ex-
ponent disappears and the convergence rate (26) is
λmax. We observe from (27) that for all fixed batch
fractions, the optimal momentum parameter, ∆λ, is
independent of batch size. The only dependence on
batch size appears in the learning rate. At first it
appears that for small batch fractions, one can take
large learning rates, but in that case, the inverse of
the Malthusian exponent Ξ−1 dominates the conver-
gence rate of SGD+M (26) and you cannot take γ
and ∆ to be as in (27) (See Figure 5).

We will define two subsets of parameter space:
the problem constrained regime and the algorith-
mically constrained regime (or stochastically con-
strained regime). The problem constrained regime
is for some tolerance ε > 0

{(γ,∆) ∶ 1 −
√
Ξ < (1 −

√
λ−1max)(1 − ε)}. (28)

The remainder we call the algorithmically con-
strained regime. To explain the tolerance: for finite
n, it transpires that we always have Ξ−1 > λmax, but
it could be vanishingly close to λmax as a function
of n. Hence we introduce the tolerance to give the
correct qualitative behavior in finite n.

Proposition 4.3. If the learning rate γ ≤
min( 1+∆

ζσ2
max

, (1−
√
∆)2

ζσ2
min

), with the trace condition

8(1−ζ)γ
1−∆ ⋅ 1

n
tr(ATA) < 1, then (γ,∆) is in the prob-

lem constrained regime with ε = 1/2.

Therefore by (26), we have that

Ψt −Ψ∞ ≤D (
4λmax

(1 +
√
λmax)2

)
t

,

for some D > 0;
(29)

we note that the expression in the parenthesis is 1−
1
2
(1 − λmax) +O((1 − λmax)2).
In the problem constrained regime, it is worth-

while to note that the overall convergence rate is the
same as full batch momentum with adjusted learning
rate, i.e., the batch size does not play an important
role as long as we are in the problem constrained
regime.

4.4 Performance of SGD+M: implicit
conditioning ratio (ICR)

An advantage of the exact loss trajectory is that we
give a rigorous definition of the large batch and small
batch regimes which reflect a transition in the con-
vergence behavior of SGD+M. To do this we intro-
duce the condition number κ, the average condition
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Figure 5: Different convergence rate regions: problem constrained regime versus algorithmically
constrained regime for Gaussian random least squares problem with (n = 2000 × d = 1000). Plots are functions of
momentum (x-axis) and learning rate (y-axis). Analytic expression for λmax (see (22)) – convergence rate of forcing
term F (t) – given in (top row, column 1) represents the problem constrained region. (top row, column 2) plots
1/(Malthusian exponent) ((25)); black region is where the Malthusian exponent Ξ does not exist. This represents the
algorithmically constrained region. Finally, (top row, column 3 and bottom row) plots convergence rate of SGD+M
= max{λmax,Ξ

−1}, (see (26)), for various batch fractions. When the Malthusian exponent does not exist (black),
λmax takes over the convergence rate of SGD+M; otherwise the noise in the algorithm (i.e. Malthusian exponent
Ξ) dominates. Optimal parameters that maximize λmax denoted by Polyak parameters (orange circle, (27)) and
the optimal parameters for SGD+M (orange dot); below red line is the problem constrained region; otherwise the
algorithmic constrained region. When batch fractions ζ = 0.85 and ζ = 0.7 (top row and bottom row, column 1)
(i.e., large batch), the SGD+M convergence rate is the deterministic momentum rate of 1/

√
κ. As the batch fraction

decreases (ζ = 0.25), the convergence rate becomes that of SGD and the optimal parameters of SGD+M and Polyak
parameters are quite far from each other. The Malthusian exponent (algorithmically constrained region) starts to
control the SGD+M rate as batch fraction → 0.

number κ̄, and the implicit conditioning ratio (ICR)
defined as

κ̄
def=

1
n ∑j∈[n] σ

2
j

σ2
min

< σ
2
max

σ2
min

def= κ

and ICR
def= κ̄√

κ
.

(30)

Here σ2
j are the eigenvalues of the Hessian of the

least squares problem with σ2
max and σ

2
min the largest

and smallest (non-zero) eigenvalues. We refer to the
large batch regime where ζ ⩾ ICR and the small batch
regime where ζ ⩽ ICR.
We begin by giving a rate guarantee that holds in

the problem constrained regime, for a specific choice
of γ and ∆.

Proposition 4.4 (Good momentum parameters).

Suppose the learning rate and momentum satisfy

γ = (1 −
√
∆)2

ζσ2
min

and

∆ =max

⎧⎪⎪⎨⎪⎪⎩
(
1 − C

κ̄

1 + C
κ̄

) ,
⎛
⎝

1 − 1√
2κ

1 + 1√
2κ

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

2

,

where C def= ζ/(8(1 − ζ)).

(31)

Then λmax =∆ and for some C > 0, the convergence
rate for SGD+M is

Ψt −Ψ∞ ≤ C ⋅∆t

= C ⋅max

⎧⎪⎪⎨⎪⎪⎩
(
1 − C

κ̄

1 + C
κ̄

) ,
⎛
⎝

1 − 1√
2κ

1 + 1√
2κ

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

2t

.
(32)

Remark 4.1. We note that for all ∆ satisfying
(1−
√
∆)2

ζσ2
min

≤ (1+
√
∆)2

2ζσ2
max

with the learning rate γ as in
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(31), we have that λmax = ∆. By minimizing the ∆
(i.e., by finding the fastest convergence rate), we get
the formula for the momentum parameter in (31).

The exact tradeoff in convergence rates (32) oc-
curs when

C
κ̄
= 1√

2κ
, or ζ =

8√
2
ICR

1 + 8√
2
ICR

. (33)

As ζ ⩽ 1, this condition is only nontrivial when
ICR≪ 1, in which case ζ = 8√

2
ICR, up to vanishing

errors.
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Figure 6: ICR and batch saturation on MNIST
data. SGD with momentum using a batch fraction ζ on
MNIST data [34]; training loss is given after 20 itera-
tions. Increasing the batch size yields proportional com-
plexity improvements up to a saturation point (gray dot,
explicit formula in [35]) which occurs before the full gra-
dient is deployed. This yields the first provable optimal
linear rate for stochastic momentum learning algorithm
that matches its deterministic equivalent.

Large batch (ζ ⩾ ICR). In this regime SGD+M’s
performance matches the performance of the heavy-
ball algorithm with the Polyak momentum param-
eters (up to absolute constants). More specifically,
with the choices of γ and ∆ in Proposition 4.4, the
linear rate of convergence of SGD+M is 1− c√

κ
for an

absolute c. Note that ζ does not appear in the rate,
and in particular there is no gain in convergence rate
by increasing the batch fraction.

Small batch (ζ ⩽ ICR). In the small batch
regime, the value of C is relatively small and the
first term is dominant in (32), and so the linear rate
of convergence of SGD+M is 1− cζ

κ
for some absolute

constant c > 0. In this regime, there is a benefit in

increasing the batch fraction, and the rate increases
linearly with the fraction. We note that on expand-
ing the choice of constants in small ζ the choices
made in Proposition 4.4 are

∆ ≈ 1 − ζ

8κ
and γ ≈ ζ

256κ2σ2
min

.

This rate can also be achieved by taking ∆ = 0, i.e.
mini-batch SGD with no momentum. Moreover, it
is not possible to beat this by using momentum; we
show the following lower bound:

Proposition 4.5. If ζ ⩽ min{ 1
2
, ICR} then there is

an absolute constant C > 0 so that for convergent
(γ,∆) (those satisfying Proposition 4.2),

√
λmax ⩾

1 − Cζ
κ
.

This is a lower bound on the rate of convergence
by Theorem 4.2.

Conclusions. While the engineering side of ma-
chine learning has leapt ahead, the theoretical ex-
planation for what is happening in ML training has
largely been left behind. The needed theory of op-
timization to close this gap should fit 3 key aspects:
(1) the algorithm is a gradient-based method, (2)
the training loss is a high–dimensional “finite-sum”,
and (3) the model is “the right type” of nonconvex
problem.

In this work, we presented a theory that does 2
of the 3; we outlined a framework for addressing
this gap between theory and practice by incorpo-
rating a deterministic resolvent condition into the
assumptions. For the ℓ2-regularized least squares
problem, the stochastic learning algorithms concen-
trate around a simple, predictable path. By analyz-
ing this path, one can draw insights into average-
case complexity and parameter selection properties,
all of which have enormous practical implications for
making machine learning work.

Clearly the most urgent direction of future re-
search is away from the least squares setting, to
handle more general losses and some types of non-
convexity. On the one hand, there is evidence that
the right type of nonconvex problems are not so
far from convex, taking to heart that, for example,
wide neural networks degenerate to kernel regres-
sion problems, which are covered by this framework.
On the other hand, as we move away from the least
squares setting, we truly do not know what we do not
know; there are many other important model prob-
lems which need the high-dimensional optimization
treatment, such as generalized linear models, inverse
problems like phase retrieval, and neural networks.
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“Covariate Shift in High-Dimensional Ran-
dom Feature Regression”. In: arXiv preprint
arXiv:2111.08234 (2021). url: https : / /

arxiv.org/abs/2111.08234.

Bulletin

Email items to siagoptnews@lists.mcs.anl.gov for
consideration in the bulletin of forthcoming issues.

Event Announcements

SIAM Conference on Opti-
mization

The SIAM Conference on Optimization will be held
in person between May 31 and June 3, 2023 in the
Sheraton Grand Seattle Hotel, in Seattle, WA. It
will be co-located with SIAM Conference on Applied
and Computational Discrete Algorithms (ACDA23).
The deadlines are October 31st, 2022 for submitting
minisymposium proposals and November 28, 2022
for contributed presentations.

Books

Evaluation Complexity of
Algorithms for Nonconvex
Optimization: Theory, Compu-
tation and Perspectives
By Coralia Cartis, Nicholas I. M.
Gould, Philippe L. Toint
Publisher: SIAM

ISBN: 978-1-611976-98-4

Published: 2022

https: // my. siam. org/ Store/ Product/

viewproduct/ ?ProductId= 41813864

About the book: How many function evalua-
tions are needed for solving a nonconvex optimiza-
tion problem? This book addresses this question,
covering composite and constrained optimization,
derivative-free optimization, bounds on nonconvex
problems. It also proposes alternative optimality
measures and compares new with traditional meth-
ods from a complexity standpoint.

Audience: The book is intended for anyone who
wants to solve nonconvex optimization problems. It
is suitable for advanced undergraduate and graduate
students in courses on advanced numerical analysis,
data science, numerical optimization, and approxi-
mation theory.
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Business Dynamics Models:
Optimization-Based One Step
Ahead Optimal Control
By Eugenius Kaszkurewicz and
Amit Bhaya
Publisher: SIAM

ISBN: 978-1-611977-30-1

Published: 2022

https: // my. siam. org/ Store/ Product/

viewproduct/ ?ProductId= 44350025

About the book: this book introduces optimal
control methods, formulated as optimization prob-
lems, applied to business dynamics problems. Busi-
ness dynamics is a combination of business manage-
ment and financial objectives embedded in a dynam-
ical system model. The model is subject to a control
that optimizes a performance index and takes both
management and financial aspects into account.

Audience: advanced undergraduate and gratudate
students in applied mathematics, business, and en-
gineering, who will enjoy the formulation-algorithm-
example approach used by the authors.

Chair’s Column

Katya Scheinberg, SIAG/OPT Chair
Cornell University, Ithaca, NY 18015-1582, USA
katyas@cornell.edu

https:/www.orie.cornell.edu/

faculty-directory/katya-scheinberg

This is my third column for the Views and News
as the end of my term as the SIAG/OPT Chair is
approaching. Current SIAG/OPT officers are step-
ping down at the end of 2022 and election of the
new officers are on the way. Please be sure to vote.
The three years have gone by incredibly fast, largely
overshadowed by the pandemic. But as we are see-
ing the return of our regular functions and in per-
son events, I am happy to report that our SIAG
remains healthy and thriving. As of May 15, 2022,
the SIAG had 1,281 members, including 786 student
members. We expect these numbers to increase once
the registration for SIAM Conference on Optimiza-
tion (OP23) starts rolling.
The conference is to be held in person, May 31st-

June 3rd, 2023 in the Sheraton Grand Seattle Ho-
tel, in Seattle, WA. It will be collocated with SIAM
Conference on Applied and Computational Discrete
Algorithms (ACDA23) and will feature plenary talks
byRussell Allgor, Amazon, U.S., Hedy Attouch,
Université Montpellier, France, James V. Burke,
University of Washington, U.S., Jesús A. De Lo-
era, University of California, Davis, U.S., Fatma

Kılınç-Karzan, Carnegie Mellon University, U.S.,
Andrea Walther, Humboldt-Universität zu Berlin,
Germany, Wolfram Wiesemann, Imperial College
London, United Kingdom and Tong Zhang, The
Hong Kong University of Science and Technology,
Hong Kong. Coralia Cartis, University of Oxford,
U.K., Jeff Linderoth, University of Wisconsin, U.S.
and myself co-chair the conference program. The
deadline for OP23 minisymposium proposal submis-
sion deadline is October 31st 2022 and for con-
tributed submissions it is November 28th, 2022.

For the first time, there will be three SIAG prizes
awarded at the meeting: the Best Paper prize, es-
tablished in 1992, the Early Career prize, estab-
lished in 2018, and the newly established Test
of Time award, which will be awarded to an in-
dividual or group of researchers for an outstanding
single piece of work that has had significant and sus-
tained influence on the field of optimization over
a time period of at least 10 years preceding the
year of the award. The winners of all SIAG awards
will be invited to present their work in a special
award session at the conference. This information
and more can be found on the new SIAG website at
https://siagoptimization.github.io.

We are happy to announce two of SIAG/OPT
highly deserving members to become SIAM Fellows
in 2022: Sharon Arroyo from The Boeing Com-
pany and James Crowley, a former executive di-
rector of SIAM. We would like to see more new Fel-
lows among the SIAG/OPT members in the upcom-
ing years and would encourage current Fellows to
nominate their eligible colleagues.

I would like to finish this column by welcom-
ing two new co-editors of this newsletter – Dmitriy
Drusvyatskiy (University of Washington) and Matt
Menickelly (Argonne National Labs). Best wishes
for the holiday season to all.

Comments from the
Editors

This edition of “Views and News” includes three
excellent contributed articles. The first article, by
Jason Altschuler, elaborates on the deep (and often-
ignored) connections between the optimal transport
problem and the minimum mean cycle problem on
graphs, and the matrix scaling and matrix balanc-
ing problems of preconditioning. These connections
lead to cross-cutting benefits in algorithmic imple-
mentation and convergence analysis.

The second article, provided by Madeleine Udell
and Zachary Frangella, highlights trends and tools
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of randomized numerical linear algebra. Because so
many optimization methods depend critically on lin-
ear system solves, which can become unwieldy when
the problem data is large, employing randomization
to decrease computational effort at the expense of
accuracy is a fundamental tradeoff that merits con-
tinued and optimization-specific study. This article
highlights precisely these considerations.
Our third and final article, written by Court-

ney Paquette and Elliot Paquette, suggests that the
traditional analysis of empirical risk minimization
through an optimization lens ignores – essentially –
the fact that many such problems in practice are
high-dimensional, both in the number of observa-
tions/data and the number of parameters/decision
variables. High-dimensional stochastic optimization
naturally benefits from many deep results in high-
dimensional probability and random matrix theory.
This article presents a number of results in this vein,
and provides numerical evidence showing that high
dimensional analysis can better predict the average
behavior of stochastic gradient-type methods.
Let us remind you that all issues of Views

and News are available at the online archive:
http://wiki.siam.org/siag-op/index.php/

View_and_News.

The SIAG/OPT Views and News mailing list,
where editors can be reached for feedback, is
siagoptnews@lists.mcs.anl.gov. Suggestions for
new issues, comments, and papers are always wel-
come.

Pietro Belotti
DEIB, Politecnico di Milano
Email: pietro.belotti@polimi.it
Web: https://belotti.faculty.polimi.it

Dmitriy Drusvyatskiy
Mathematics Department, University of Washington
Email: ddrusv@uw.edu
Web: sites.math.washington.edu/~ddrusv

Matt Menickelly
Argonne National Laboratory
Email: mmenickelly@anl.gov
Web: www.mcs.anl.gov/~menickmj
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