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Articles

Targeting Exascale with Julia on
GPUs for multiperiod optimization

with scenario constraints
Mihai Anitescu, Kibaek Kim, Youngdae Kim, Adrian Mal-

donado, François Pacaud, Vishwas Rao, Michel Schanen,
Sungho Shin, Anirudh Subramanyam1

1 Introduction
We present a case study of how, confronted with the prob-
lem of rewriting an optimization-centered exascale applica-
tion from scratch because of technological constraints, we
were able to do so in less than 18 months relying on fea-
tures provided by the Julia language and to run it at the
largest scale available on exascale-type architectures. The
technological constraints stemmed from the fact that all ex-
ascale architectures will be GPU based whereas most existing
high-performance large-scale optimization tended to rely on
specialized sparse saddle point solvers for performance. As is
well known, sparse linear algebra on GPUs is difficult; but,
importantly, what we would have needed to address this chal-
lenge on the time scale of the project was unlikely to become
available. The fact that Julia provides just-in-time compila-
tion and has exceptional compactness and that its philosophy
embeds transformable programming allowed us to consider
rewriting the application from scratch, under some assump-
tions of support of the AMD and Intel GPU architectures by
the Julia community that have so far panned out. Employing
our experience in decomposition for large-scale optimization
and automatic differentiation and targeting multiple exas-
cale architectures, we were able to execute problems at scale
on both very large-scale AMD- and NVIDIA-based architec-
tures, and we fully expect that before a year we will succeed
in doing so with the Intel architecture. Moreover, through
the KernelAbstractions.jl package in Julia we see a way to
do so—and have partially implemented it—without a line of
architecture-dependent code in the application. We believe
that this is an indication that advances in compiler technolo-
gies may be at a stage where supporting radically different
architectures without compromising performance and with
manageable (if not even comfortable) development effort may

1All authors’ affiliation and photos are at the end of the article.
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be within sight. We share with the optimization community
our experience of this journey so far.

2 Context
We present the circumstances that led us to decide to rewrite
an entire application in Julia.

2.1 Scenario-Driven Optimization Problems on
CPU

In the past decade the Argonne optimization group, along
with many other researchers, has been interested in solv-
ing scenario-driven optimization problems (such as two-stage
stochastic optimization problems [21, 27, 16, 15, 14]) on very
large parallel computers. A big demand in this area has
stemmed from an increased focus on including uncertainty
in decisions about energy systems, particularly for stochas-
tic dispatch to accommodate an increased penetration of re-
newable resources on the grid. Even without uncertainty, a
flagship problem in this class is security-constrained alter-
nating current optimal power flow (OPF), which in many
market areas in the United States is the standard for com-
puting the locational marginal prices at which the market is
cleared. In that nonlinear, nonconvex optimization problem
the scenarios are brought about by a contingency: losing
one of the network assets (e.g., [3, 30]). This allows the
market formulation to explicitly account for reliability. It
is of interest to solve such problems and versions of them
that consider multiple contingencies, incorporation of uncer-
tainty, and multiperiod formulations for responsive markets
or control.

In our endeavors we leveraged the fact that decomposi-
tion algorithms have been successful for solving large-scale
optimization problems. The key idea of the algorithms is to
exploit the special structures that are embedded in a large
optimization problem, which can lead to the decomposition
of the problem into a number of smaller problems. While this
can be accomplished in many ways, we have pursued mainly
two approaches: interior-point methods with decomposition
at the linear algebra level and Lagrangian approaches where
the optimization problem itself was decomposed.

In the first category, the parallel optimization solver PIPS2

exploits a block-angular structure of the Karush–Kuhn–
Tucker (KKT) system when solving nonlinear optimiza-
tion problems by using interior-point methods. The block-
angular KKT system can then be solved in parallel by using
the Schur complement, which has been successfully applied
for solving optimal power flow problems on high-performance
computing systems with many CPUs (e.g., [21, 27]). In the
design of the approach, for best performance to productivity
ratio it is essential to be able to solve efficiently one sce-
nario on one compute node and thus fit one scenario in the
node memory. Moreover, classical interior-point approaches
for nonconvex optimization require access to linear algebra
capable of determining the inertia of the KKT matrix effi-
ciently. On CPU-based architectures, however, both these
features were easily available, and this was for several years

2https://github.com/Argonne-National-Laboratory/PIPS

our preferred approach when targeting the largest problems
we could solve.

In the second category, Lagrangian-based decomposition
algorithms have been developed and applied (e.g., dual de-
composition [16, 15, 14, 13], alternating direction method of
multipliers or ADMM [5, 33], progressive hedging [35, 29,
10]) for solving large-scale optimization problems on high-
performance computing (HPC) systems. Such algorithms
have far more flexibility compared with linear-algebra-based
decomposition since they can allow the computational unit
to be as small as one desires. On the other hand, they are
first-order methods, and although deriving excellent com-
putational performance per iteration they cannot compete
overall with the first category of algorithms. This is also
partially behind the success of interior-point algorithms in
particular when targeting a very high level of accuracy.

Another thread in our work has been our increasing re-
liance on Julia, which we have worked with since 2014.
For instance, the Argonne team extended JuMP—an opti-
mization algebraic modeling package in Julia—for stochas-
tic programming with the package StochJuMP, which can
create a stochastic programming problem instance in par-
allel [12]. Later, the package was further generalized for
any structured optimization and interfaced with the parallel
optimization solvers PIPS and DSP.3 In addition, we were
able to quickly prototype new optimization algorithms by
leveraging the modeling convenience for several application-
specific models such as the attacker-defender problem [4]
and Lagrangian-based network decomposition [36] in power
systems. We also made publicly available more exper-
imental prototypes of generic optimization solvers such
as the simplex method, sequential quadratic programming
method, reduced-optimization method, and alternating di-
rection method of multipliers.4

Another consideration is the choice or development of the
modeling environment. It provides multiple features, but an
important one in our context consists of derivative evalua-
tions. In optimization, modeling environments for nonlinear
programming include AMPL [8], JuMP [6], and Pyomo [11].
These environments, however, are generally not built with
extreme scalability in mind, which was one consideration be-
hind the development of StochJuMP [12]. None of these envi-
ronments supports automatic differentiation (AD) on GPUs.

2.2 The exascale project and the GPU pressure
In the late 2000s to early 2010s the United States embarked
on an initiative to bring about exascale computing. While
the effort had many drivers, an important one was (and still
is) the concern about a possible slowdown in Moore’s law,
which had driven much of the increase in computational ca-
pability. This concern is tightly related to the rapid increase
of power consumption for the top supercomputers. In 2006
the Blue Gene/L led the Top500 list with 1,433 kW power
consumption for 280.6 TFlop/s. Comparing this with to-
day’s fastest computer with a power consumption of 29,899

3https://github.com/Argonne-National-Laboratory/DSP
4https://exanauts.github.io/
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kW for 442,010 TFlop/s illustrates that a factor of 30 of the
2000 speedup observed in LINPACK can be attributed di-
rectly to power. Moreover, the absolute power consumption
estimates for top supercomputers were getting outside the
reasonable ranges for any facility.

In anticipation of this power wall, the U.S. Department
of Energy created the Exascale Computing Project (ECP),5
which we joined in 2016 as the part of the ExaSGD project.6
ExaSGD aims to solve scenario-driven optimization prob-
lems and some of their extensions, such as multiperiod op-
timization, at exascale. While the nature of the target ex-
ascale architectures was unclear as it was evolving, in about
early 2019 it became apparent that the exascale architectures
would all be GPU based. Moreover, our project timelines re-
quired a reasonable expectation of demonstrating a solution
at scale by September 2021.

GPUs are accelerators with special parallel threading cores
akin to vector architectures of the past and follow the sin-
gle instruction, multiple data (SIMD) paradigm according to
the Flynn taxonomy [7]. For example, NVIDIA classifies its
architecture as streamed multiprocessing single instruction,
multiple threads.7 The streaming hints at a memory hierar-
chy that enables high bandwidth through a wide bus instead
of a deep pipeline. The threads are then executed in lock-
step with one instruction and fetching their own data. This
approach adds flexibility to this elaborate system that lets
anything achieve tremendous acceleration provided that it
fits into this blueprint of massively parallel but lockstepped
threads.

With their origin in mass-appeal graphics processing for
games, GPUs have by now increased their numerical preci-
sion and added operations for computational science, such
as the tensor cores to cater to the data center market with a
focus on machine learning. Contending with them as math-
ematicians and computer scientists also allows us to have a
glimpse of and prepare ourselves for the hardware of the fu-
ture. If the ECP pathway is an indication, what will drive
future hardware will be the appeal to the mass consumer
market, which is still currently unknown. This requires a
flexible software infrastructure that can leverage a variety of
accelerators and vendors as they become available.

2.3 Evaluating the way forward
The distinguishing feature of streaming calculations on
GPUs is that computations are very fast but data move-
ment is (relatively) slow. Consequently, certain operations
that are essential for efficiently factorizing a sparse matrix,
such as reordering, are exceedingly inefficient to carry out
on GPUs. To investigate the linear algebra situation, our
ECP project team did a thorough profiling of sparse linear
solvers for KKT matrices on GPUs led by Kasia Świrydow-
icz [34]. The best solver outcomes on both architectures are
summarized in Table 1. Here the GPU used for profiling is an

5https://www.exascaleproject.org
6https://www.exascaleproject.org/research-project/

exasgd/
7https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html

MA57 (s) STRUMPACK (s)
ACTIVSg200 0.2 1.6
ACTIVSg10k 0.6 3.7
ACTIVSg70k 6 27

Table 1: Summary of results presented in [34]. Fastest CPU
solver MA57 compared to fastest GPU solver STRUMPACK.

NVIDIA V100, the current backbone of the second-ranking
TOP500 supercomputer Summit.

At that time, MA57 on CPUs seemed to run faster than
what we had available on GPUs, and the situation looked at
least as dire in the fall of 2019 when we were doing techni-
cal planning. This seemed to indicate that a linear algebra
decomposition approach, which was our predominant go-to
method for scalability (Section 2.1), could not succeed in uti-
lizing the GPU well. Moreover, anything relying on direct
sparse linear algebra (at least for solving the problem on one
compute node) for performance would likely be untenable.
Beyond this we had to be concerned with obtaining deriva-
tives efficiently for our models, as well as possibly supporting
two different architectures (AMD and Intel GPUs), which led
to concerns about portability as well.

The first important decision was whether to keep rely-
ing on the interior-point method as the exterior structure,
and in particular for the problem at the node (where mem-
ory requirements during factorization would be more limiting
compared with the first stage, which could in principle rely
on distributed storage). Although significant progress had
been made in iterative sparse linear algebra for interior-point
algorithms when used for convex optimization [1, 9], their
performance still exhibited significant variance, even when
the stopping tolerance was not very aggressive (about 10−4).
The state-of-the art reference [1] stated, “We hope that this
work provides a first step toward the construction of general-
izable preconditioners for linear and quadratic programming
problems.” Although we used older references when making
our decisions in 2019–2020, we interpreted the situation that
while some hope existed for reliably preconditioning interior
point methods in the future, we did not seem to be there
in 2021, even for convex problems. In addition, we had to
contend with the nonconvexity of the ACOPF constraints.
We thus decided to try approaches other than interior-point
methods, although other parts of the project remained com-
mitted to them, and we believe that in some cases they will
prove the dominant solver as they did in the past.

Given our experience with Lagrangian-based decomposi-
tion, we recognized that it would have to play a big role. It
has been particularly successful when a decomposable struc-
ture is neither available at the linear algebra level nor ex-
ploitable for parallel computation on HPC, which is exactly
the situation we are facing with next-generation HPC archi-
tecture with many GPUs (vs. CPUs). Nevertheless, which
algorithmic combination would prove successful was difficult
to foresee since the data on Lagrangian algorithms for non-
linear programming was scarce at the scale and type we were
considering. Several requirements were identified.

https://www.exascaleproject.org
https://www.exascaleproject.org/research-project/exasgd/
https://www.exascaleproject.org/research-project/exasgd/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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R1 We can rapidly code many different algorithms and test
them on the relevant scales; therefore the environment
needed expressivity and compactness.

R2 Given our compressed timeline, we could not afford to
prototype in one language (e.g., MATLAB) and im-
plement at performance in another (say, C or C++).
This problem is encountered particularly by the machine
learning (ML) community and their frameworks. The
Julia creators specifically identified and set out to solve
this two-language problem [2].

R3 We get efficient derivative information in terms of both
speed of execution and speed of development. A subtle
issue is that no optimization modeling environment that
evaluated derivatives on GPUs existed (and exists in
2021) so we had to consider rewriting a big portion of
the modeling frontend in any case.

R4 We needed to cover multiple architectures simultane-
ously (NVIDIA for initial prototyping and AMD and
Intel at production), so the approach needed to be
amenable to portability.

R5 The nature of the exascale project requires performance
comparable to C and C++ or any other conceivable en-
vironment.

After exploring our other assignments in the project and
analyzing and minor prototyping other ways, in spring 2020
it became clear we had to rewrite our pipeline from scratch
with a demonstration due date of September 2021. We de-
cided to leave as one of our paths forward the ability to have
the entire application from the modeling to the lowest-level
computation done in Julia in a way that addressed R1–R5.
The ExaSGD project itself had other pathways, not depen-
dent on Julia, that we could and would leverage. It also
seemed useful, however, given various other technological un-
certainties, to maintain a path of full control over the entire
application to allow ourselves full flexibility to deal with un-
foreseen events. In our judgment, Julia was the only solution
at the time that could satisfy R1–R5 in our time horizon, and
we decided to take that path.

One significant uncertainty remained, namely, the support
for vendor libraries (CUDA, ROCm, oneAPI) that needed to
be developed by the Julia community with whom we did have
contact. Working with Julia has been a bit of adventure in
the past seven years in terms of stability of interfaces be-
tween new releases; and, in that light, requirement R4 was
in particular a bit more concerning than the others. Nev-
ertheless, we also had experienced the energy and enthusi-
asm behind the Julia community, which, combined with that
of our team and our experience, seemed to make the effort
worthwhile and certainly intriguing and exciting.

We thus decided to take that leap. We share with the
readers our understanding of the features of Julia that make
it an excellent match for our requirements R1–R5, and we
describe the capabilities that resulted by September 2021.

Figure 1: Julia’s just-in-time compilation enables LLVM IR
manipulation through expression transformations.

3 Some Features of Julia and Consequences
for Its Capabilities

The fact that Julia offers expressivity and language com-
pactness, combined with performance comparable to C and
C++, has been already broadly discussed and employed in
the scientific and, particularly, the optimization community,
driven mainly by the excellent modeling language JuMP [6].
These features address requirements R1 and R5, and subse-
quently R2. Such features are also achievable to some extent
by other environments such as the current effort to allow
compilation of Python through efforts such as Numba [19],
although it is hard to argue that no limits are imposed by a
language that was designed for interpretation. However, Ju-
lia’s design has some special features that make it versatile
for achieving R4, and it is expected to achieve R3 by relying
on the LLVM backend.

3.1 LLVM’s Intermediate Representation and
Julia’s Access to It

Formal language is the scientific field of abstract analysis of
both artificial and natural languages. It led to huge successes
in both human linguistics when Chomsky tried to uncover a
universal human language grammar, and it built the foun-
dation of virtually any modern compiler. In essence, human
language is arguably the most complete abstract model to de-
scribe the universe. Languages have to be fast-to-interpret,
yet compact, information carriers. The interpretation recre-
ates the information from a stream of data into structure
about semantics and meaning. This parsing process from
stream of data to structure is decomposed into well-defined
stages: lexical analysis, semantical analysis, attribute anno-
tation, and so on.

Compilers encode the semantics into an annotated ab-
stract syntax tree (AST). LLVM started out in 2000 as the
first compiler to strictly standardize that intermediate stage
called LLVM intermediate representation (IR). The LLVM
language represented by a syntax tree is then unparsed into
machine instructions. Effectively, a compiler is nothing more
than a language translator, usually from more complex hu-
man to more primitive machine hardware targeted structure.

Julia has direct access to the LLVM IR at runtime, see
Figure 1. There is no need to parse code to apply auto-
matic differentiation or define new paradigms such as oper-
ator overloading at the language level. Julia can access the
code representation at the compiler level, and it can leverage
the entire compiler infrastructure to manipulate the code se-
mantics. This is distinct from any other language used in
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scientific computing (C/C++, Fortran, Python, MATLAB).
Having a language that easily allows bidirectional communi-
cation between program and compiler is crucial for applied
math and numerical science. That is exactly the mechanism
by which algorithms and mathematics are combined to create
new models and methods for solving problems and represent-
ing physical processes. Currently, portability happens to be
the main driver of this evolution. Whether Julia has nailed
this is up for debate. However, the direction is indisputably
right.

3.2 Code Transformation in Julia and Differen-
tiable Programming

Differentiable programming is a term coined by the machine
learning community that requires any model used in the loss
function to provide gradients. Any code written in domain-
specific ML languages such as TensorFlow require its intrin-
sic operations (e.g., linear solvers) to provide their adjoint
or gradient implementation. Thus, through AD machinery
these implementations can then be integrated into machine
learning models. Such features are of major interest in non-
linear optimization applications since effective derivative in-
formation access is a major plus.

The obvious downside of these frameworks is that all
intrinsic operations and functions must be written in a
domain-specific language that then goes through the entire
architecture-specific compilation pipeline. As opposed to
common scientific programming languages such as Fortran,
C/C++, or Python, Julia is inherently differentiable because
of the reasons related to its language design and closeness to
the compiler (see Section 3.1). Additionally, differential pro-
gramming requires the resolution of the two-language prob-
lem in R2 in order to achieve any seamless integration of
numerical simulations into ML.

We illustrate how differentiating code can be defined as
a graph transformation algorithm on the syntax tree of a
program and thus the LLVM IR. Given an implementation
of y = f(x1, x2) = e(x1·x2), we have the following single-
assignment code.� �

z = x*y
w = exp(z)� �

An AD tool could generate the following gradient state-
ment.� �

z = x*y
w = exp(z)
dz = exp(z)
dx = y*dz
dy = x*dz� �

Such differentiation can be implemented in various ways; but
remember that Julia parses the original program into LLVM
IR, which we represent with a simplified abstract syntax tree
(AST) in Figure 2a.

Just like any code transformation, AD can be implemented
as a manipulation of the AST. First, the AST is annotated

with the derivative partials on the edges. Then, we get the
derivative of an output with respect to an input by multiply-
ing the edges on the path of the AST, giving us the expres-
sions dx=y*exp(z) and dy=x*exp(z), spanning themselves
as an AST, as shown in Figure 2b. One advantage of this
approach is that the compiler now has full access to the com-
plete AST, being able to apply further optimizations (e.g.,
loop-invariant code motion [24] by leveraging the compiler
pipeline while differentiating).

Moreover, access to the IR by the differentiation tools al-
lows reusing the compiler optimizations, sometimes vastly
reducing the compute time of the gradients by exploiting
the structure identified by the compiler. Moses and Chu-
ravy [24] show that for a broad class of computational pat-
terns, IR-based AD tools such as Enzyme result in factors
of 2–100 improvement for a benchmark of classical compu-
tational patterns. Since the IR is language independent, one
can, in theory, use it for differentiation for all programming
languages that have an LLVM frontend. However, targeting
the LLVM IR directly is a challenging endeavor. Julia alle-
viates it by offering indirect access to the LLVM IR through
expressions that can be used to implement similar techniques
(e.g., Diffractor, Zygote), albeit then restricted to the Julia
language. Using the Julia AD tool Zygote, we illustrate in
§3.4 how portability and AD are combined to give us portable
and highly optimized differentiation.

3.3 Portable Programming and Julia
In our codes we rely mainly on KernelAbstractions.jl for
implementing our architecture-abstracted kernel functions.
It unifies all the different vendor APIs (wrapped in Julia
through CUDA.jl, AMDGPU.jl, oneAPI.jl) under one sin-
gle API. Through a flip of a switch we are able to run the
same code on CPU, AMD GPU, and NVIDIA GPU (see
Figure 3).8 This Julia native way of providing automatic
code transformations for each architecture keeps all concerns
neatly separated; AD, optimization, and hardware develop-
ers can develop in parallel with only minor interactions.
KernelAbstractions.jl defines various ways of parti-

tioning work items and work groups that a kernel is applied
to. In Figure 4 we show a simple work item partitioning
that defines a global work item id (e.g., 1–100) and a local
work item id that corresponds to the sequence number that
a thread is working on (e.g., for five threads this would range
from 1 to 20).

In the application code the kernels are instantiated by
passing a device argument f = tron(device, T, N) and
defining a number of workers T plus the number of work items
N. Only at that moment is the actual kernel implementa-
tion generated based on the device argument, which could
be CUDADevice() (CUDA), ROCDevice() (AMD), or CPU()
for the host CPU architecture. After that the kernel can be
launched asynchronously, and we can wait for its comple-
tion via wait(event). These macros in Julia have built-in
support for metaprogramming, which enables the algorith-

8Currently, we are working together with Julia Lab on oneAPI sup-
port for KernelAbstractions.jl.
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exp(z)

z=x*y

x y

exp(z)

y x

(a) Parsed syntax tree ex·y , annotated with partial derivatives (in
bold). The partial ∂g

∂x
is equal to the multiplied path of the edges

from x to g yielding the statement ex·y · y.

*

exp y

*

x y

(b) The generation of the expression ∂g
∂x

differentiation should be im-
plemented directly by a compiler. Julia provides access to the LLVM
syntax tree as defined by the IR. In this way transformations can be
applied recursively or combined with other transformations, since the
AST of the gradient respects the same LLVM IR.

Figure 2: Differentiation on ASTs

Figure 3: KernelAbstractions.jl serves as a portability layer for
the big three GPU vendors NVIDIA (CUDA), AMD (ROCm),
and Intel (oneAPI).

Listing (2.1) Kernel Function� �
@kernel function tron_kernel(args...)
# Global item ID
I = @index(Global, Linear)
# Local item ID
J = @index(Local, Linear)
...
end� �

Listing (2.2) Algorithm Function� �
function application(device)

workers = T
workitems = N
# Generate
tron = tron_kernel(device, T, N)
# Execute kernel
event = tron(args...)
# Wait until event terminates
wait(event)

end
application(CUDADevice())
# application(ROCDevice())
# application(CPU())� �

Figure 4: Example application implementation with kernel func-
tion implemented using KernelAbstractions.jl.

Kokkos KernelAbstractions.jl
Core source code
(lines of code) 108, 000 2, 600

CUDA interface
(lines of code) 13, 190 442

Contributors 100+ 20

Table 2: Overview of effort required for adding a new architec-
ture that has LLVM backend support. Comparing C++ source
code files in kokkos/core/src and kokkos/core/src/Cuda
in version 3.5 to KernelAbstractions.jl

mic generation of code. A Julia program can algorithmically
change itself at runtime based on input from another pro-
gram. This is exactly what portability layers in other lan-
guages (e.g., Kokkos, Raja, HIP, OpenMP) try to achieve for
various parallel programming paradigms, albeit with much
larger developer effort, as illustrated in Table 2.
KernelAbstractions.jl relies on an interface layer for

each GPU architecture that defines its device object (e.g,
CUDADevice()). This layer itself relies on a host of gener-
ation packages such as GPUCompiler.jl. Adding another
GPU architecture, however, requires only a thin interface
layer. We illustrate this in Table 2 by comparing with the
mature C++ portability library Kokkos that leverages C++
templates. This assumes vendor support for Julia that pro-
vides an implementation of CUDA in Julia as is currently
done by CUDA.jl.

Architecture portability is challenging in most languages.
Often, we are interested in developing solvers that work both
in CPU and in GPU architectures, which can lead to compli-
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cated code in most traditional languages. To solve this prob-
lem, Julia offers the multiple dispatch paradigm, where
different implementations of a method can be defined. This
allows programmers to develop device-independent code
by leveraging abstraction layers. In this way, higher levels
of the code offer an abstraction that closely matches mathe-
matical expressions, whereas lower layers can be highly tuned
to ensure the highest levels of performance. An example is
shown in snippet 2.3.

Listing 2.3: Thanks to Julia’s multiple dispatch paradigm, rou-
tines such as this solve algorithm can be written in an abstract
fashion allowing input arrays from different architectures.� �

using CUDA

function solve(A, b)
x = similar(b)
...
res = norm(A*x - b)
...
return x

end

#A = Array([2 1; 1 2])
A = CuArray([2 1; 1 2])

#b = Array([1 1])
b = CuArray([1 1])

solve(A, b)� �
In snippet 2.3 we can see that switching between different

architectures is a matter of selecting the type of the arrays.
Rather than creating solveCpu and solveGpu methods,
one can simply write one method that takes different types
as input. Here we can see a solve method with an oper-
ation that computes the residual of the solution. The algo-
rithm begins with a call to similar, which creates a so-
lution vector of the given type. The residual norm involves
a subtraction, a matrix-vector multiplication, and a norm
computation. All of these operations are abstract and can
accept arrays of different types. In runtime, Julia’s powerful
multiple dispatch will compile the appropriate method. This
programming paradigm allows one to simplify code, promote
abstract routines that closely match mathematical descrip-
tion, and enable extensibility of the code base.

3.4 Composable Programming: Portable Differ-
entiation

We illustrate in snippet how all this machinery enables com-
posable programming by combining two expression transfor-
mations (Listing (2.4)). Applying automatic differentiation
to portability now is just a mere superposition of both codes;
the actual application method implementation f is unaware
of both notions.

Listing 2.4: The function f has no notion of AD or of CUDA.
However, we can instantiate the input variable x as a CUDA,
ROCm, or oneAPI array, and it will do differentiation through
that function on the GPU. The parallelization happens through
the broadcast operator ".".� �

using Zygote
using CUDA
# using AMDGPU
# using OneAPI

function f(x)
return sum(x.*x)

end
x = [i/(1.0+i) for i in 1:10] |> CuArray
# x = [i/(1.0+i) for i in 1:10] |> ROCArray
# x = [i/(1.0+i) for i in 1:10] |> oneArray
dx = gradient(f, x)� �

We initialize an array x and move it to the GPU using
the pipe operation |> CuArray. The function f computes
the sum of an element-wise square operation. The operator
"." is called the broadcast operator in Julia and behaves
similarly to the Matlab dot operator. When passing x on the
GPU to the function f, this function is instantiated in CUDA
through the LLVM backend. Using the AD tool Zygote, we
then generate the gradient of that CUDA implementation of
f. No domain-specific language for the function f has been
used.

4 Optimization on GPU Using Julia
As expressed in §2.3, R1 required prototyping and moving to
production without recoding the most promising algorithms
we encountered.

4.1 Algorithms Prototyped April 2020 – Sept
2021

Following is a summary of the algorithms we were able to
prototype and our experience with them.

1. Simplex-type algorithms underlying sequential linear
and quadratic programming for solving generic nonlin-
ear optimization problems. Such algorithms are par-
ticularly powerful when we need to solve a number
of problems with minor changes in problem data, for
example, in a branch-and-bound method for solving
mixed-integer programming. The Julia prototype of the
SQP algorithm is available in https://github.com/
exanauts/SQP.jl. Profiling has shown that other
options are faster for nonlinear programming (NLP)
proper, but we are still pursuing it for integer program-
ming on GPUs.

2. ExaTron [18] is a GPU-based batch solver that can solve
a large number (e.g., tens of thousands) of indepen-
dent nonlinear nonconvex problems in parallel entirely
on GPUs, without data transfers between the CPU and
GPU. ExaTron implements a Newton-based trust-region
method [20] as its underlying algorithm and has been
implemented and tested on AMD and NVIDIA GPUs.
Its implementation is available at https://github.
com/exanauts/ExaTron.jl. Our original attempt
was to apply ExaTron for an augmented Lagrangian
formulation ACOPF, which did not have good perfor-
mance; but as the unit solver of ExaADMM it proved
excellent.

https://github.com/exanauts/SQP.jl
https://github.com/exanauts/SQP.jl
https://github.com/exanauts/ExaTron.jl
https://github.com/exanauts/ExaTron.jl
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3. ExaADMM [17] implements an ADMM algorithm with
convergence guarantees, providing a highly scalable so-
lution method for solving alternating current optimal
power flow problems on GPUs. All operations per
ADMM iteration, such as primal and dual variable up-
dates, are performed on GPUs. In ExaADMM, sub-
problem solves are significantly accelerated by ExaTron.
Its implementation is available at https://github.
com/exanauts/ExaAdmm.jl. This algorithm was
tested on CPU, AMD GPU, and NVIDIA GPU plat-
forms, and it is the production second-stage solver that
we will describe in more detail in §4.2.

4. ExaADMM also supports online tracking of solutions as
parameter changes over time. In contrast to interior-
point algorithms, ADMM can exploit warm starting to
significantly accelerate its solution time. In [17], we
demonstrate the online tracking ability of ExaADMM,
outperforming Ipopt in solving ACOPFs as load changes
over time.

5. ProxAL: Our goal with ProxAL.jl https://
github.com/exanauts/ProxAL.jl was to proto-
type a distributed parallel decomposition algorithm
for solving linearly coupled multiblock-structured NLP
problems. This is the production first-stage solver and
decomposition manager; we describe it in more detail in
§4.2.

6. MadNLP: MadNLP.jl https://github.com/
MadNLP/MadNLP.jl is a pure-Julia NLP solver based
on the widely used filter line-search interior-point
algorithm. The solver was originally designed for CPUs
[31], but we were able to quickly adapt it to run also on
GPUs with dense linear algebra. Currently, MadNLP.jl
can solve dense NLPs on NVIDIA GPUs; AMD and
Intel GPU supports are on the way; and it is the core
solver for Argos.jl.

7. Argos.jl https://github.com/exanauts/Argos.
jl is a Julia package to solve OPF problems entirely on
the GPU, leveraging the GPU capabilities of the non-
linear optimization solver MadNLP. The efficient reso-
lution of OPF requires the evaluation of second-order
derivatives. Argos.jl densifies the OPF problems by us-
ing a reduced space approach. By combining these two
elements together with the interior-point algorithm im-
plemented MadNLP, we get a tractable method to solve
OPF problems on the GPU [25], which we currently
tested on NVIDIA.

4.2 Our September 2021 Production Configura-
tion

From the seven pathways described in §4.1, based on the
prospects we saw in April 2021, we settled on ProxAL.jl for
the first-stage decomposition manager and ExaADMM as
the second-stage resolution of the problem at the node, as
depicted in Figure 5. To explain some of the scalability and

Figure 5: Two-stage parallelization strategy. ProxAL decom-
poses along the periods, and each ExaTron instance solves a single
ACOPF.

performance features, we will briefly describe their algorith-
mic features. Detailed description of these algorithms and
their performance can be found in [32], [17].

Both algorithms can be described as Lagrangian-based de-
composition algorithms for nonlinear optimization problems
of the following form:

minimize
x1,...,xN

N∑
j=1

fj(xj) (1a)

subject to
N∑
j=1

Ajxj = b, (1b)

xj ∈ Xj ∀j = 1, . . . , N, (1c)

where Xt are compact (possibly nonconvex) sets, At ∈
Rm×nt are matrices, and ft : Rnt 7→ R are continu-
ously differentiable (possibly nonconvex) functions. In the
above formulation, the decision variables are grouped into T
blocks (x1, x2, . . . , xT ) coupled only via the linear constraints∑T

t=1 Atxt = b.
The coupling constraint (1b) is one of three types.

C1 Coupling between successive periods in a multiperiod
approach, typically the difference between two succes-
sive (in time) generator settings connected by the ramp-
ing variable. N can be very large in this case, between
a few dozen and a few thousand.

C2 Coupling between stages in two-stage scenario
optimization-type problems (the scenarios may be
of either the uncertainty or the contingency type).
Then N = 2.

C3 Coupling between branches, buses, and generators in a
network. In this case, N is proportional to the number
of types of grid components in a network (typically low).

To decompose C1 and C2, we use ProxAL; for C3 we use
ExaADMM, fundamentally to solve one ACOPF problem on
a compute node.

At its heart, ProxAL.jl performs ADMM-style updates
while requiring only local solutions of the linearly coupled
individual-block NLP problems. Unlike standard ADMM
schemes for nonconvex problems, however, ProxAL.jl in-
troduces certain proximal terms to the augmented La-
grangian function in a controlled manner and performs only
Jacobi-style updates [32]. This approach is essential where
N may be very large for which Gauss–Seidel sweeps would

https://github.com/exanauts/ExaAdmm.jl
https://github.com/exanauts/ExaAdmm.jl
https://github.com/exanauts/ProxAL.jl
https://github.com/exanauts/ProxAL.jl
https://github.com/MadNLP/MadNLP.jl
https://github.com/MadNLP/MadNLP.jl
https://github.com/exanauts/Argos.jl
https://github.com/exanauts/Argos.jl
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Table 3: Performance of solving ACOPF from cold start

Data ADMM Time (secs) Solution Quality

Iterations ADMM Ipopt ∥c(x)∥∞
|f−f∗|

f∗
1354pegase 823 1.99 2.44 1.23e-03 0.05%
2869pegase 1,230 4.19 6.09 3.64e-04 0.03%
9241pegase 1,372 7.95 50.80 1.12e-03 0.08%

13659pegase 1,529 8.70 131.12 1.25e-03 0.05%
ACTIVSg25k 3,307 36.05 118.64 1.21e-02 0.09%
ACTIVSg70k 2,897 69.81 469.03 1.52e-02 2.20%

severely hamper performance. Users of ProxAL.jl can eas-
ily switch between a JuMP backend (where they can spec-
ify a local CPU- or GPU-based NLP solver) or the afore-
mentioned GPU-based ExaTron backend for solving individ-
ual NLP problems. ProxAl.jl can decompose the problem
by time periods and scenarios and distribute the computa-
tions over multiple compute nodes with multiple GPUs by
using the MPI protocol [32]. This enables one to solve mul-
tiperiod contingency-constrained ACOPF—extremely large-
scale nonlinear nonconvex optimization on GPU clusters,
some of which we demonstrate below.

ExaADMM.jl For decomposing the network problem for
the scenario C3, our basic idea is to exploit the massive par-
allel computing capability of GPUs to decompose the orig-
inal problem into a number of small subproblems that can
be efficiently solved in parallel on GPUs through batch non-
linear programming by ExaTron [18]. In this case we may
have a large number of such subproblems; however, the mas-
sive parallel computing capability of GPUs enables us to
promptly process them using batch nonlinear programming,
as described in [18].

An example of our approach in the context of ACOPF
computation has been demonstrated in [18, 17]. To scale
ACOPF solutions with multiple GPUs on supercomputers,
we implement an ADMM algorithm (ExaADMM) that de-
composes the original problem into a number of small compo-
nent subproblems, similar to [23], each of which represents
an electric grid component as in [22, 23]. The key advan-
tages of this approach are that most subproblems (particu-
larly for buses and generators) have closed-form solutions,
and the other subproblems are nonconvex nonlinear opti-
mization each with 6 variables, 8 bound constraints, and 2
convex inequality constraints only. As a result, each itera-
tion of the ADMM algorithm can stream the computation of
the tiny nonlinear problems to GPUs. Those nonlinear prob-
lems are solved in batch on GPUs by using ExaTron. Such
a batch can be solved far faster on GPUs than on CPUs, as
can be seen in Figure 6 (where 6 GPUs solve a large batch
40 times faster compared with 40 CPUs.)

4.3 Performance
Derivative computation performance As stated in Sec-
tion 4.1, our Argos.jl algorithm involves the accumulation
of a reduced Hessian Wuu = ∇2

uuL in the reduced control
space of the optimal power flow with variable u. The reduced
Hessian is evaluated efficiently using the Implicit Function
theorem, and by computing in parallel batches of Hessian-
vector products Wuu · v using Forward-over-reverse AD. The
full method is described in [26]. From first-order adjoint
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Figure 6: Performance comparison: 40 CPUs vs 6 GPUs on a
Summit node. The GPUs solve batches of 34K problems 40 times
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Figure 7: Cumulative computation time of warm start.

codes (reverse pass), we generate second-order derivatives
automatically via ForwardDiff.jl [28]9. The benefit is that
this automatically generates code that allows a SIMD propa-
gation of multiple forward directions (equal to the number of
colors of the sparsity pattern) on the GPU, achieving excel-
lent performance. In addition, we use a batched linear solver
to compute multiple projections in the reduced space at once
by running N batches. The performance over various case
sizes and batch sizes can be seen in Figure 10. Note that as
a reference we compare the GPU implementation against a
sequential CPU implementation. The CPU implementation
would likely exhibit further speedup through threaded par-
allelism. Note also that the code currently uses handwritten
adjoints because of limitations of current AD tools that ei-
ther miss a feature or would impact performance. However,
we plan on integrating Enzyme.jl10 at some point.

Cold-Start Performance of ExaADMM Table 3
demonstrates the computational performance of ExaADMM
when we solve ACOPF from cold start. The results show
up to 6 times faster computation time of ExaADMM than
that of Ipopt. Since ADMM is a first-order method, solu-

9https://github.com/JuliaDiff/ForwardDiff.jl
10https://github.com/wsmoses/Enzyme.jl

https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/wsmoses/Enzyme.jl
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Figure 8: Scaling of ProxAL + ExaTron on Summit at OLCF

Figure 9: Speed of light for ExaTron on a single GPU solving
the ACTIVSg70k case.
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Figure 10: Parallel scaling of the total reduced Hessian accu-
mulation ∇2F with batch size N . A ratio value < 1 indicates a
faster runtime compared with that of UMFPACK and AutoDiff
on the CPU in absolute time. The dotted lines indicate the lin-
ear scaling reference. Lower values imply a higher computational
intensity.

tion accuracy may not be comparable to that of the second-
order method; however, it still shows a reasonable accuracy
in ∥c(x)∥∞, particularly given the standards for the appli-
cation in practice (where a few percentage error is accept-
able). The relative objective gap shows little difference in
most cases between two objective values computed by Ex-
aADMM and Ipopt, respectively, except for the 70K case,
although we used the same stopping criterion as in [33]. We
note that the problem is the largest of its type that would

make sense to solve, since it is of the size of the U.S. Eastern
Interconnect.

Warm-Start Performance of ExaADMM Figure 7
shows ExaADMM’s online tracking capability by warm start.
We solve 30 time periods one time period at a time in a rolling
horizon fashion in this case. In most networks, ExaADMM
finds solutions for all the 30 time periods by exploiting warm
start, even before Ipopt finds a solution for the first period.

Peak Performance of ExaADMM An important issue
in the Exascale project is the fraction of peak performance
achieved, since the metrics of success revolve around the in-
tensity of the floating-point operations. Because the ProxAL
decomposition layer is light, much of this performance will
be achieved by the nodal solver, in this case ExaADMM. In
Figure 9 we see that ExaADMM achieves about 10% of the
“speed of light” intensity on NVIDIA V100, which is much
in line with classical numerical libraries on CPUs. While we
believe we have ideas how to improve it by factors of 2–3
(since 10% was essentially our first result), the performance
is definitely in the range acceptable for exascale-class super-
computers.

Scalability of ProxAL Running on an entire exascale
machine will be carried out by scenario decomposition that
is managed by ProxAL. As expected from the thinness of
the ProxAL layer, good scalability of the approach is fairly
straightforward for the large run in Figure 8.

Portability As indicated in requirement R4 in §2.3, we
aimed to see whether we can support multiple architectures.
At the current stage, our kernel abstraction has machine-
independent code and, as can be seen in Figure 11, creates
identical results on two different architectures: AMD GPUs
and NVIDIA GPUs.

4.4 Summary Status

The advanced features of Julia, some of which we described in
§3, and its (in our opinion) extraordinary proficiency allowed
us to overcome several suboptimal outcomes as described in
§4.1 and to successfully rewrite an application from scratch
in about 18 months and put us within striking distance of
being able to run simulations compatible with exascale su-
percomputing requirements. Julia allowed us to fulfill all
our requirements R1–R5 that we laid out in §2.3. Given
its excellent design and compactness, the language Julia has
another salient feature that is familiar to MATLAB users:
people with moderate computing experience can pick it up
incredibly fast, and it does not require major sacrifices in per-
formance. These features allowed us to proceed in multiple
directions simultaneously and thus to effectively mitigate the
fairly large space of technological uncertainty that we faced
as described in §2.2 and §2.3. Despite the large number of
authors of this communication, the average funding was for
about 3 full-time employees during this time, so we believe
the development throughput efficiency to have been excel-
lent.
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(a) ProxAL.jl/ExaTron.jl on Spock (x86)/AMD (ROCm)

(b) ProxAL.jl/ExaTron.jl on Summit (PowerPC)/NVIDIA (CUDA): AMDGPU.jl is reporting that no AMD GPUs are available

Figure 11: Exact match of results with ProxAL/ExaTron and two dramatically different architectures on the ERCOT 2000 bus case
with 2 periods and 19 contingencies
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5 Outlook
In the near term, we are not completely satisfied with the
convergence rates of some of our algorithms, which we be-
lieve can be improved. Moreover, we intend to pursue a vi-
able second-order method, and not just first-order decompo-
sitions, to achieve more robustness in convergence behavior.
We also aim to obtain a more formalized modeling environ-
ment suitable for streaming processors as well as to pursue
forays in integer programming on GPUs with the goal of
solving other problems of interest. Nevertheless, the fact
that we are within the performance range of our exascale
target after 18 months has more than justified our leap of
faith in using Julia, and it is a testimony for the conviction
of the Julia community, with whom we needed to interact at
various times.

Our decision to go with Julia came also from another
driver, the one concerning hardware risk, which we believe
(speaking strictly in the name of the authors of the paper and
not the ECP project or any other entity) affects not just the
exascale project but potentially all of technical computing
and perhaps particularly numerical optimization. Given the
concerns about power consumption we illustrated above, we
find that a real possibility exists that most average hardware
of the future will require using an accelerator such as a GPU.
Many of these accelerators will be designed with data-driven
applications in mind, and many of the libraries we currently
use on CPUs will be unable to produce the kind of perfor-
mance we have been accustomed to (see Table 1). Such a
situation would mean having to rewrite from scratch many
of our approaches, which is to large extent what we have
described in §4.1—and, moreover, on architectures that will
keep changing. Julia proved to have excellent programmer
productivity on GPUs in addition to its portability and per-
formance features that we outlined. All these features made
our endeavor bearable in this case and even exciting, given
the novelty of the situation and the learning opportunities.
We hope our experience will be of use to our readers if they
find themselves in similar circumstances.
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1 Introduction
Consider a mixed-integer optimization problem with indica-
tor variables

min
x,y

a⊤x+ c⊤y + y⊤Qy (1a)

s.t. Gx+Hy ≤ b (1b)
yi(1− xi) = 0 ∀i ∈ {1, . . . , n} (1c)
x ∈ {0, 1}n, y ∈ Rn, (1d)

where Q ∈ Rn×n is a given positive-semidefinite matrix,
G,H ∈ Rm×n, a, c ∈ Rn and b ∈ Rm. Problem (1) arises
pervasively in practice, e.g., in portfolio optimization [8]
(where the quadratic term y⊤Qy corresponds to the vari-
ance of the portfolio) and in sparse regression [11] (where the
quadratic function corresponds to the widely used quadratic
loss function). The complementary constraints (1c) and bi-
nary constraints are used to force the logical condition that
xi = 0 =⇒ yi = 0, thus indicator variables x correspond to
the support of the continuous variables y.

Solution approaches for non-convex optimization problems
such as (1) are often based on the solution of suitable convex
relaxations of the problem. In this paper we consider relax-
ations of the mixed-integer epigraph of the specific quadratic
function appearing in (1), that is, the set

X =
{
(x, y, t) ∈ {0, 1}n × Rn+1 : t ≥ y⊤Qy, (1b) − (1d)

}
.

Note that since problem (1) is NP-hard [10] even without
constraints (1b), obtaining a complete description of the con-
vex hull of X may not be possible. Thus, most approaches
in the literature are based on characterizing convex hulls of
simpler version of X – by restricting matrix Q to be of a sim-
ple class and ignoring additional constraints – and using the
resulting insights to design practical convex relaxations for
the general problem (1). In this paper, we review recent re-
sults concerning relaxations of set X, and then discuss open
questions.

2 Conic quadratic relaxations
Off-the-shelf codes for mixed-integer optimization have made
great strides over the past two decades towards solv-
ing mixed-integer conic quadratic optimization problems.
Therefore, an initial push towards solving (1) focused on con-
structing conic-quadratic relaxations of X.

We first point out that using generalized disjunctive pro-
gramming [9], it is possible to construct conic quadratic ex-
tended formulations of X, even with arbitrary constraints

(1b). The resulting formulations, however, may have up to
O(n2n) additional variables. If matrix Q is of rank r < n,
then one can obtain conic quadratic extended formulations
with O(nr+1) additional variables [18]. A direct application
of these convexifications for (1) results in problems with sub-
stantially more variables, that cannot be handled effectively
by off-the-shelf solvers. Nonetheless, disjunctive program-
ming remains a powerful tool for deriving sharper convexifi-
cations by projecting out the additional variables [4, 19, 2].
We now turn to classes of set X whose convex hull is conic
quadratic-representable in the original space of variables.

Perspective reformulation If n = 1, and set X reduces
to X1 =

{
(x, y, t) ∈ {0, 1} × R2 : t ≥ qy2, y(1− x) = 0

}
with q > 0, then the closure of the convex hull of X1 is
cl conv(X1) =

{
(x, y, t) ∈ [0, 1]× R2 : xt ≥ qy2

}
. This re-

sult, which is a consequence of the convexifications in [9],
was first observed in [15], and shown to be conic quadratic
representable in [1]. Figure 1 depicts the perspective function
f(x, y) = y2/x describing cl conv(X1).
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Figure 1: Graph of the perspective function t = y2/x.

The perspective reformulation can be used to strengthen
relaxations of problem (1) as follows: if Q = D + R where
D ∈ Rn×n

+ is a diagonal matrix and R ⪰ 0, then we can
reformulate (1) as

min
x,y,t

a⊤x+ c⊤y +

n∑
i=1

Diiti + y⊤Ry (2a)

s.t. tixi ≥ y2i ∀i ∈ {1, . . . , n} (2b)
(1b) − (1d), t ∈ Rn

+. (2c)

A matrix D is often directly available from the context. For
example, in portfolio optimization, the covariance matrix Q
has to be estimated from data; a common method to use to

gomezand@usc.edu
https://sites.google.com/usc.edu/gomez
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do so is to use a factor model, in which case Q = FΣF⊤+D
where F ∈ Rn×k is the exposure matrix, Σ ∈ Rk×k is the fac-
tor covariance matrix and D is a diagonal matrix with the
residual variances. In regression problems, given a model
matrix A ∈ Rk×n and regularization term λ > 0, the goal is
to minimize ∥b−Ay∥22 +λ∥y∥22; in this case, Q = A⊤A+λI,
and one can set D = λI. If a matrix D is not immedi-
ately available, a simple heuristic is to set D = λmin(Q)I,
where λmin(Q) denotes the minimum eigenvalue of Q. More
sophisticated heuristics that involve solving semidefinite op-
timization problems (SDPs) have also been proposed [16].

Due to the relative simplicity of the convex relaxation in-
duced by the perspective reformulation, and difficulties aris-
ing from solving large nonlinear mixed-integer optimization
problems (arising from alternatives to the perspective refor-
mulation) via branch-and-bound, approaches based on for-
mulation (2) are still the preferred method to solve (1) to
optimality. There has been a recent push to devise special-
ized methods for solving (2), which avoid using standard off-
the-shelf technology for handling conic quadratic constraints
[13, 14, 20] and scale to larger instances.

The rank-one reformulation Consider a rank-one ma-
trix Q, that is, Q = qq⊤ for some q ∈ Rn and set X reduces to
XR1 =

{
(x, y, t) ∈ {0, 1}n × Rn+1 : t ≥ (q⊤y)2, (1c)

}
, where

we assume that qi ̸= 0 for all i ∈ {1, . . . , n} (otherwise vari-
ables xi and yi can be ignored when studying XR1). The
closure of the convex hull of XR1 is

cl conv(XR1) =
{
(x, y, t) ∈ [0, 1]n × Rn+1 :

t ≥ (q⊤y)2, (e⊤x)t ≥ (q⊤y)2
}
,

where e ∈ Rn is a vector of 1s [3]. The perspective reformu-
lation is a special case of rank-one reformulation with n = 1.

To use the rank-one reformulation for problem (1), a simi-
lar decomposition approach as used by the perspective refor-
mulation can be used. In particular, if Q =

∑
j∈J qjq

⊤
j + R

where R ⪰ 0 and J is some index set, then problem (1) can
be reformulated as

min
x,y,t

a⊤x+ c⊤y +
∑
j∈J

tj + y⊤Ry (3a)

s.t. tj ≥ (q⊤j y)
2, (e⊤j x)tj ≥ (q⊤j y)

2 ∀j ∈ J (3b)

(1b) − (1d), t ∈ RJ
+, (3c)

where ej ∈ Rn such that (ej)i = 1 if (qj)i ̸= 0 and (ej)i = 0
otherwise.

Note that each element j ∈ J can be associated with a
subset of {1, . . . , n}, corresponding to the non-zero entries of
qj . Thus J can be associated with a subset of the power set
of {1, . . . , n}, that is, J ⊆ 2n, and we can rewrite constraints
(3b) as

min

{
1,
∑
i∈S

xi

}
tS ≥

(∑
i∈S

(qS)iyi

)2

∀S ∈ J. (4)

The natural convex relaxation of (3) is partic-
ularly strong when vectors qj are sparse, e.g.,

J = {S ⊆ {1, . . . , n} : |S| ≤ κ} for a small κ ∈ Z+.
Suitable vectors qj may be naturally available in some
applications, e.g., in sparse inference problems with Markov
Random Fields [6], but in general an additional optimiza-
tion problem may need to be solved in order to find them
(discussed in the next section).

There is strong evidence suggesting that if matrix Q is
not rank-one, then cl conv(X) is not conic quadratic repre-
sentable in the original space of variables. Indeed, current
conic quadratic formulations for the full-rank case with n = 2
already require several additional variables [17], while a re-
cent description in the original space of variables [7] uses a
infinite number of conic quadratic constraints. Thus, strong
relaxations of X may require more sophisticated nonlinear
constraints, discussed next.

3 Semidefinite relaxations
Reformulations (2) and (3) can serve as the basis for stronger
conic relaxations of (1). Given J ⊆ 2n and vectors {qS}S∈J ,
where the support of qS ∈ Rn is S, define

ϕ ({qS}S∈J)
def
= min a⊤x+ c⊤y +

∑
S∈J

tS + y⊤Ry (5a)

s.t. (4), (1b) (5b)

x ∈ [0, 1]n, y ∈ Rn, t ∈ RJ
+, (5c)

where R = Q−
∑

S∈J qSq
⊤
S is completely determined by vec-

tors qS . Observe that (5) is the natural convex relaxation
of (3), obtained by dropping the complementary and inte-
grality constraints. Moreover, if J = {{i} : i ∈ {1, . . . , n}},
then (5) is the natural convex relaxation of (2). The vectors
qS that yield the strongest relaxation correspond to optimal
solutions of the SDP

max
{qS}S∈J

ϕ ({qS}S∈J) s.t. Q−
∑
S∈J

qSq
⊤
S ⪰ 0. (6)

Moreover, it can be shown that min and max can be inter-
changed in (6) without any duality gap, obtaining an SDP
relaxation of (1). Such formulations were first derived in the
context of the perspective reformulation [12, 25], and then
generalized to rank-one reformulations [3].

We now present an alternative derivation of such formu-
lations based on more direct arguments, following the dis-
cussions in [18, 22]. The nonlinear objective of (1) can
be linearized with the introduction of additional variables
Y

def
= yy⊤ as a⊤x+c⊤y+⟨Q,Y ⟩, where ⟨Q,Y ⟩ =

∑
i,j QijYij

is the Frobenius inner product. Moreover, since Q ⪰ 0, a re-
laxation of (1) in this extended space is

min
x,y,Y

a⊤x+ c⊤y + ⟨Q,Y ⟩ (7a)

s.t. Y ⪰ yy⊤ (7b)

(1b), x ∈ [0, 1]n, y ∈ Rn, Y ∈ Rn×n. (7c)

Relaxation (7) is equivalent in terms of strength to the natu-
ral convex relaxation of (1). Relaxation (7) can be strength-
ened by noting that for any vector q ∈ Rn, if Y = yy⊤, then
⟨qq⊤, Y ⟩ = (q⊤y)2. Moreover, if x ∈ {0, 1}n, then inequality
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(4) holds at equality. Thus, for any S ∈ J , letting YS be the
submatrix of Y indexed by S and letting yS be the vector of
y indexed by S, we find that

⟨qSq⊤S , YS⟩ ≥
(∑

i∈S(qS)iyi
)2

min
{
1,
∑

i∈S xi

} , ∀qS ∈ Rn

⇔ ⟨qSq⊤S , YS − ySy
⊤
S

min
{
1,
∑

i∈S xi

} ⟩ ≥ 0, ∀qS ∈ Rn

⇔ YS − ySy
⊤
S

min
{
1,
∑

i∈S xi

} ⪰ 0

⇔
(
YS yS
y⊤
S min

{
1,
∑

i∈S xi

}) ⪰ 0, (8)

where the last equivalence follows from the Schur comple-
ment. Thus constraints (8) can be added to (7) for every
S ∈ J ; the resulting conic formulation is stronger than (5)
(for any choice of q vectors), and they are equivalent if vectors
are chosen according to (6), see [12, 18]. Similar relaxations
have been used with convexifications other than rank-one
[17, 19], although the resulting semidefinite relaxations are
more complicated.

Connections with other conic relaxations An alter-
native idea to derive strong convex relaxations for (1) is
based directly on the linearization of the quadratic term as
⟨Q,Y ⟩ =

∑
i,j QijYij , and thus revolves around relaxations

of the mixed-integer set

Z =
{
(x, y, Y ) ∈ {0, 1}n × Rn+n2

: Y ⪰ yy⊤, (1b) − (1d)
}
.

Set Z is substantially more general than X: while a de-
scription cl conv(X) would result in ideal relaxations of (1)
for a specific matrix Q, a description of cl conv(Z) would
result in ideal relaxations of (1) for any matrix Q. As a con-
sequence, cl conv(Z) is also substantially more complex [2].
Whereas relaxations based on X may be more suitable to
solve problem (1), set Z plays a critical role in more general
problems, e.g., problems with multiple quadratic constraints
and/or non-convex quadratic terms.

Nonetheless, the analysis in this section shows how relax-
ations for the simpler set X can be lifted into relaxations
for Z. Indeed, given any fixed matrix Q ⪰ 0, the system of
inequalities

⟨Q,Y ⟩ ≥ t, (x, y, t) ∈ cl conv(X) (9)

is valid for cl conv(Z). Moreover, cl conv(Z) is fully de-
scribed by the (infinite) system of inequalities (9), one for
each Q ⪰ 0 –where set X implicitly depends on Q. In
particular, inequalities (8) can be interpreted as inequali-
ties describing a portion of cl conv(Z), corresponding to the
matrices of rank one.

Connections with regularization Consider the “ℓ0”-
regularized problem

min
y∈Rn

c⊤y + y⊤Qy + ∥y∥0, (10)

where ∥y∥0 =
∑n

i=1 1{yi ̸=0} is the support of y. Problem
(10) is a special case of (1) with a = e and no constraints
(1b). A standard approach in the statistical literature is to
approximate (10) with a continuous optimization problem of
the form

min
y∈Rn

c⊤y + y⊤Qy + r(y), (11)

where r : Rn → R+ is a suitable regularization function used
as a proxy of the support of y. The most widely used regular-
ization is the ℓ1 approximation [21] where r(y) =

∑n
i=1 |yi|,

but several alternatives have been proposed in the literature.
The regularization function r is often non-differentiable at
the origin and separable, and possibly non-convex.

As first pointed out in [12], relaxations of the form (5) can
be interpreted as non-convex regularizations, where

r(y) = y⊤(R−Q)y +min
x,t

∑
S∈J

tS s.t. (4), (5c).

While the regularization functions are non-convex, the regu-
larized problem (11) is still convex. Intuitively, solving prob-
lem (6) amounts to finding a maximal non-convex regular-
ization (among a class of penalty functions) that ensures the
convexity of the ensuing regularized problem. In fact, as
shown in [12], convexifications based on the perspective re-
formulation is equivalent to the minimax concave penalty
(MC+) [24], proposed independently in the statistical litera-
ture. On the other hand, the convexifications based on rank-
one reformulations result in a new class of non-separable reg-
ularizations that better approximate the support of y. Fig-
ure 2 depicts the regularization functions r(y) induced by
perspective and rank-one reformulations in an example with
n = 2.

4 Additional results and open questions
While the conic relaxations presented in this paper sub-
stantially improve upon the natural convex relaxation of
(1), it has been unclear whether such relaxations match the
structure of cl conv(X), whether they are “necessary" to de-
scribe it (since cl conv(X) is not polyhedral, there is not a
clear characterization of necessary inequalities), or whether
cl conv(X) is SDP-representable in the original space of vari-
ables. Nonetheless, recent results [7] shed some light into
these questions when there are no constraints (1b). In
particular, separation over cl conv(X) can be accomplished
by solving an optimization problem with a single positive-
definite constraint and (a possibly exponential number of)
linear constraints. Moreover, it is possible to construct
an extended SDP-representable formulation of (1) with a
quadratic number of additional variables, a single conic con-
straint, and exponentially many linear inequalities. These re-
sult suggest than the class of semidefinite optimization prob-
lems is sufficiently rich to represent cl conv(X).

Most convexification approaches in the literature study
sets with no constraints (1b), thus a natural question is how
much additional constraints change the structure of the con-
vex hulls. Existing works [7, 22, 23] point out that if the
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(a) Perspective reformulation
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(b) Rank-one reformulation

Figure 2: Interpretation of (5) as non-convex regularizations
r(y) with n = 2.

constraints involve only the indicator variables x, then the
overall structure of the convex remains unchanged, that is,
the class of inequalities required to describe cl conv(X) is
the same. However, if the constraints include even simple
nonnegativity constraints y ≥ 0, then the structure seems
to be substantially different from the unconstrained case [4,
5, 19]. Studies involving additional and more sophisticated
constraints on the continuous variables are largely missing in
the literature.

A critical challenge towards devising practical methods

to solve (1) to optimality is designing an effective branch-
and-bound method. On the one hand, practical off-the-
shelf mixed-integer optimization solvers are able to han-
dle conic quadratic constraints, but as pointed out in this
note, those are insufficient to describe the underlying con-
vex hull of interest. On the other hand, the relevant
convex hulls seem to be SDP-representable, but designing
an efficient general-purpose branch-and-bound algorithm for
mixed-integer semidefinite optimization problems is very dif-
ficult. Nonetheless, the results to date suggest that a com-
promise may be possible: indeed, describing cl conv(X) does
not require arbitrary semidefinite constraints, but rather con-
straints with a particular structure (and, in an extended for-
mulation, a single conic constraint). Thus, devising methods
that can handle this specific class of relaxations may be much
simpler than designing a general purpose MISDP solver.
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In Memoriam

Shabbir Ahmed (1969 – 2019)

Photo from the Georgia Tech ISYE institutional page

Shabbir Ahmed was the Anderson-Interface Chair and
Professor in the H. Milton Stewart School of Industrial
and Systems Engineering at Georgia Institute of Technol-
ogy. Shabbir passed away on June 19th, 2019, at the age
of 49, after a hard-fought battle with cancer. Shabbir was
born in Bangladesh and received his B.Eng. in mechanical
engineering from Bangladesh University of Engineering and
Technology in 1993. He moved to the U.S. in 1995, where he
received his M.S. and Ph.D. from the University of Illinois
at Urbana-Champaign in 1997 and 2000, respectively.

Shabbir joined the H. Milton School of Industrial and Sys-
tems Engineering at Georgia Institute of Technology in the
year 2000 and had been a faculty member there since then.
His contributions to integer programming, stochastic pro-
gramming and their applications were substantial. He is rec-
ognized as a leading (perhaps the leading) researcher in the
field of stochastic integer programming. Shabbir’s accom-
plishments were recognized with many awards throughout his
career. Shabbir won first prize in the George B. Dantzig Dis-
sertation Award in 2000. He received the NSF career award
in 2002 and the IBM Research Award twice, in 2002 and
2005. He was recognized by Georgia Tech as the Coca-Cola
Junior Professor in 2005 and Dean’s Professor and Stew-
art Faculty Fellow in 2014. In 2017, Shabbir was named the
Anderson-Interface Chaired Professor and was selected as an
INFORMS fellow. In 2018, Shabbir received the prestigious
Farkas Prize from the INFORMS Optimization Society.

Stochastic programming considers optimization models in
which some of the parameters are uncertain and modeled
as random variables. Integer programming considers opti-
mization models in which some of the decision variables are
constrained to be discrete (e.g., 0 or 1), enabling modeling
of discrete decisions and logical relationships. Problems con-
taining stochastic parameters or integer variables (or both)
arise in a huge variety of important application areas. In ad-
dition to advancing the theory and methodology for solving
stochastic and integer programming problems, Shabbir made
significant contributions to applications of these problems in

areas including in energy [13, 21, 30, 35], supply chain and
logistics [10, 16, 25, 24], and finance [22].

Shabbir’s work significantly advanced the field of stochas-
tic integer programming. Already during his Ph.D. study,
Shabbir published influential works on a finite branch and
bound method for two-stage stochastic programs with inte-
ger variables in the second stage [8] and multi-stage stochas-
tic capacity expansion problem with integer variables in all
stages [6]. After joining Georgia Tech, Shabbir and his co-
authors designed a method for deriving cuts for a multi-stage
stochastic program based on cuts for a deterministic ver-
sion of the problem [15]. In [1, 14] he derived novel sce-
nario decomposition algorithms for binary stochastic pro-
grams. Most recently, in [36] Shabbir and his co-authors
proposed the groundbreaking Stochastic Dual Dynamic in-
teger Programming (SDDiP) method for solving multi-stage
stochastic integer programs, a notoriously difficult problem
class due to the triple challenge of uncertainty, dynamics, and
discrete decisions. SDDiP has been shown to be effective in
solving many multistage stochastic integer programs, for ex-
ample, portfolio optimization [36], unit commitment [35], hy-
dropower scheduling [18], facility location [34], among many
others. To enhance SDDiP, in [4] Shabbir and co-authors
introduced a related method for multi-stage stochastic inte-
ger programs that does not require discretization of the state
variables.

Shabbir also made breakthrough contributions to a par-
ticular class of stochastic programming problem known
as chance-constrained programs (CCPs). CCPs allow a
decision-maker to limit risk by ensuring that the chosen de-
cisions lie within a desired set with high probability. Shab-
bir’s work addressed three fundamental challenges for solving
CCPs: the high-dimensional integration required to evaluate
feasibility of a CCP, the potential non-convexity of the fea-
sible region, and the hardness of optimization. In [7, 19, 22],
Shabbir and his collaborators provided rigorous analyses of
the Monte Carlo sample average approximation method for
solving chance constrained programs, resolving the issue of
high-dimensional integration. To address the nonconvexity,
Shabbir and his co-authors proposed novel relaxation or ap-
proximation schemes [5, 2, 9, 29], where the resulting prob-
lems are convex programs. To speed up solving a chance con-
strained program to optimality, Shabbir and his co-authors
developed valid inequalities [20, 9, 23], decomposition ap-
proaches [26], and analyzed the effectiveness of a family of
cuts known as quantile cuts [31].

Shabbir also had significant impact on the direction of re-
search taken by the mixed-integer programming community
beyond his work on stochastic integer programming. In [28],
Shabbir and his co-authors developed the first-known branch
and bound algorithms using polyhedral approximations to
solve mixed-integer second order conic programs. Shabbir
and his collaborators analyzed different mixed-integer mod-
els for non-separable piece-wise linear optimization [27]. In
[17], they developed a new class of effective valid inequalities
for solving the challenging mixed-integer bilinear programs,
and in [12], they introduced and studied forbidden vertices
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with important application in improving the classical inte-
ger L-shaped method [11]. Finally, in the series of papers
[3, 32, 33] Shabbir and his collaborators explored various
connections between cutting-planes for structured linear and
nonlinear integer programs and submodular optimization.

As a colleague, Shabbir was well-known for always finding
time for everyone, for his kindness and his wisdom. As a
collaborator, Shabbir had a great collaborative attitude and
was a visionary – he was quick to see connections to related
and emerging areas and forge productive partnerships both
in academia and industries. He was striving to finish the
works with his collaborators even one week before his death.
As a mentor, he always prioritized students’ needs over his
own interests and was always willing to listen to students and
to help them as much as he could. Over 19 years of his career,
he successfully advised over twenty-five Ph.D. students.

Farewell, Shabbir! May you rest in peace! We will miss
you.
Santanu S. Dey, H. Milton Stewart School of Industrial
and Systems Engineering, Georgia Institute of Technology.
Email: santanu.dey@isye.gatech.edu
Jim Luedtke, Department of Industrial and Systems Engi-
neering, University of Wisconsin, Madison.
Email: jim.luedtke@wisc.edu
Nick Sahinidis, H. Milton Stewart School of Industrial and
Systems Engineering and School of Chemical and Biomolec-
ular Engineering, Georgia Institute of Technology.
Email: nikos@gatech.edu
Weijun Xie, Department of Industrial and Systems Engi-
neering, Virginia Tech.
Email: wxie@vt.edu
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Bulletin
Email items to siagoptnews@lists.mcs.anl.gov for con-
sideration in the bulletin of forthcoming issues.

1 Event Announcements
IPCO 2022
The 23rd Conference on Integer Programming and Combina-
torial Optimization (IPCO XXIII) will be held at the Eind-
hoven University of Technology from June 27-29, 2022. Be-
fore the conference, a summer school will take place on June
25-26. More details are available at the conference website:
https://www.ipco2022.com.

ISMP 2022
The 2022 edition of ISMP will be held in Beijing. Originally
scheduled for 2021, due to the covid-19 pandemic the con-
ference has been postponed to August 14-19, 2022 and will
be in hybrid format. For more details, see the conference
website at http://ismp2022.csp.escience.cn.

ICCOPT 2022
The seventh International Conference on Continuous Op-
timization (ICCOPT) is scheduled for July 25-28, 2022 at
the Lehigh University campus in Bethlehem, Pennsylvania,
USA. It will be preceded by a Summer School on July 23-24.
See https://iccopt2022.lehigh.edu for more infor-
mation.

2 Books

Modern Nonconvex Nondifferen-
tiable Optimization
By Ying Cui and Jong-Shi Pang
Publisher: SIAM
ISBN: 978-1-61197-673-1
Published: 2021
https://epubs.siam.org/doi/book/10.

1137/1.9781611976748

About the book: After introducing the fundamentals of
smooth optimization and convex optimization, the book de-
scribes the theory and practice of modern nonconvex, nondif-
ferentiable optimization. It covers applications in Statistics,
OR, and Machine Learning, and provides several examples
and exercises for suitable use in advanced courses.
Audience: practitioners of Applied and Computational
Mathematics, in particular Operations Research, Statistics,
Computer Science (including Machine Learning), as well as
engineers and economists. It is suited for advanced Opti-
mization/OR courses.

3 Other Announcements
John von Neumann Theory Prize to A. Shapiro
Alexander Shapiro has been awarded the 2021 John von
Neumann Theory Prize for his contributions to the theory
and methods for Stochastic Programming. Congratulations
Alexander!

Steele Prize to M. Goemans and D. Williamson
The 2022 Steele Prize is awarded to Michel Goemans and
David Williamson for their Seminal Contribution to Re-
search for their paper “Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidef-
inite Programming,” published in 1995 in the Journal of the
ACM. Congratulations Michel and David!
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Chair’s Column
Katya Scheinberg, SIAG/OPT Chair
Cornell University, Ithaca, NY 18015-1582, USA
katyas@cornell.edu
https:/www.orie.cornell.edu/
faculty-directory/katya-scheinberg

It is once again my privilege to write this column as a
year has passed since our last issue. It has been another
difficult year in terms of the pandemic and consequently in
terms of professional events. SIAM Conference on Optimiza-
tion (OP21), which was to be co-located with SIAM Annual
Meeting (AN21), SIAM Conference on Discrete Mathematics
(DM21), SIAM Conference on Applied Computational Dis-
crete Algorithms (ACDA21) and the SIAM Conference on
Control and Its Applications (CT21), was moved online, as
were all the other co-located SIAM conferences. Although
not ideal, the event overall was quite successful. The total
number of attendees for all 5 conferences was more than 2000
and OP21 enjoyed a full program with 573 attendees, seven
plenary talks, two minitutorials, and two SIAG prize talks.

Once again, our thanks go to Defeng Sun and Tamás Ter-
laky, the conference co-chairs, and the rest of the organizing
committee, for the enormous work they put into the confer-
ence program. Current SIAG/OPT officers are now planning
for the next installment of the SIAM Conference on Opti-
mization – OP23. It is currently planned to be held in person
in May of 2023, though the location will be finalized in early
2022. The conference co-chairs are Coralia Cartis (Oxford
University) and Jeff Linderoth (University of Wisconsin).

The virtual business meeting of our SIAG was held during
OP21 where several topics were discussed. Here is a brief
summary:

• Initial plans for OP23 were announced.

• The new SIAG/OPT Fellows were welcomed, includ-
ing Richard Byrd, David Gay and Defeng Sun (Class
of 2020) and James Burke, Xiaojun Chen and Andreas
Wächter (Class of 2021).

• New SIAM Engage community site was announced.

• Challenges and possible efforts in attracting more in-
dustry based members to SIAG/OPT and to SIAM in
general were discussed.

• A proposal for the new SIAG/OPT Test of Time award
was presented by the SIAG officers.

We will keep the community updated on any further de-
velopments regarding the last two items, via the email list
and in the following issues of the Views and News. We hope
these developments will generate further excitement among
our members. SIAG/OPT keeps growing and is currently
the third largest interest group within SIAM.

I wish you and your loved ones to stay healthy, optimistic,
and productive in 2022 and beyond. Happy New Year.

Comments from the Editors
This edition of the “Views and News” comes with three

great contributions. The first is by Mihai Anitescu and coau-
thors, who have built in less than 18 months, from scratch, a
multi-period optimization solver, based on exascale architec-
ture, aimed at Optimal Power Flow (OPF) applications with
Julia, the rising language for computational applications.

The second article, by Andrés Gómez, describes the cur-
rent state of the art in relaxations of quadratic optimiza-
tion problems with indicators, i.e., binary variables that can
“switch” on or off other variables.

Our third contribution is an obituary of the late Shabbir
Ahmed, written by Santanu Dey, Jim Luedtke, Nick Sahini-
dis, and Weijun Xie.

Let us remind you that all issues of Views and News are
available at the online archive: http://wiki.siam.org/
siag-op/index.php/View_and_News.

The SIAG/OPT Views and News mailing list, where edi-
tors can be reached for feedback, is siagoptnews@lists.
mcs.anl.gov. Suggestions for new issues, comments, and
papers are always welcome.

Pietro Belotti
DEIB, Politecnico di Milano.
Email: pietro.belotti@polimi.it
Web: https://belotti.faculty.polimi.it

Somayeh Moazeni
School of Business, Stevens Institute of Technology.
Email: smoazeni@stevens.edu
Web: http://web.stevens.edu/facultyprofile/?id=

2041
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