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Every three years, the SIAM Optimization conference pro-

vides an excellent opportunity to survey the developments
in our field as well as to catch up with and make new col-
leagues. This is one setting where taking a shortest path
between conference rooms is rarely optimal! In this issue we
highlight work presented in OP17 minisymposia on PDE-
constrained and risk-averse optimization. Drew Kouri and
Thomas Surowiec present their perspective on a growing in-
tersection among optimization, uncertainty quantification,
and computational science and engineering.

We welcome Tamás Terlaky’s first column as chair of the
SIAM Activity Group on Optimization. From Tamás you’ll
learn the location of OP20. It is also fun to look back and
see that OP17 was not the first time that the conference
was held in British Columbia. The fifth SIAM Conference
on Optimization, OP96, took place in Victoria and was co-
chaired by Andy Conn and Margaret Wright.

Many of you have written to opt for an electronic copy of
Views and News; for the others among you, please do not
hesitate to contact us to opt out of receiving physical copies.

As always, we welcome your feedback, (e-)mailed directly
to us or to siagoptnews@lists.mcs.anl.gov. Suggestions
for new issues, comments, and papers are always welcome!
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1 Introduction

Uncertainty is pervasive in all science and engineering ap-
plications. Incorporating uncertainty in physical models is
therefore both natural and vital. In doing so, we often ar-
rive at parametric systems of partial differential equations
(PDEs). When passing from simulation to optimization, we
obtain (typically nonconvex) infinite-dimensional optimiza-
tion problems that, upon discretization, result in extremely
large-scale nonlinear programs.

For example, consider a linear elliptic PDE on a two-
dimensional domain with a single random coefficient. If
we sampled the random input with 10,000 realizations of
the coefficient, the resulting optimization problem would
have 10,000 PDE constraints. Furthermore, discretizing each
PDE with piecewise-linear finite elements on a 100×100 uni-
form quadrilateral mesh results in 100,000,000 degrees of
freedom. As a result, the critical components for ensur-
ing mesh-independent performance of numerical optimiza-
tion methods in the deterministic setting, for example, so-
lution regularity and generalized differentiability, are even
more critical in the stochastic setting.

Deterministic PDE-constrained optimization is a well-
established discipline within applied mathematics, with a
wide array of applications; see, for example, [16, 26, 11].
However, the theory, algorithms, and numerical analysis
for optimization problems governed by PDEs with ran-
dom inputs are a much more recent topic that melds ideas
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from PDE-constrained optimization with those of stochastic
programming and uncertainty quantification, for example,
[6, 25, 12, 2, 1, 14, 10].

Parallel to the developments in PDE-constrained opti-
mization, the stochastic programming community has de-
veloped theory and algorithms for complex decision-making
problems that often exploit specific problem structure, in-
cluding linearity, convexity, and/or discrete decision vari-
ables. Potentially the most important contribution of
stochastic programming is the development of mathemati-
cal models for uncertainty and risk preference through risk-
averse and robust optimization; see, for example, [17, 19,
5, 22]. Nevertheless, little work has been dedicated to the
stochastic optimization of distributed parameter systems de-
fined by PDEs with random inputs.

Independent of PDE-constrained optimization and
stochastic programming, the field of uncertainty quantifi-
cation (UQ) has rapidly evolved with the growing need to
model variability in complex systems; see [27, 23]. There are,
however, shared goals within PDE-constrained optimization
and UQ to move beyond forward propagation of uncertainty
and solve optimization problems constrained by PDEs with
uncertain inputs. In particular, many of the approximation
techniques developed in UQ are also relevant discretizations
for stochastic PDE-constrained optimization problems.

In this article, we present a perspective on PDE-
constrained optimization under uncertainty, including notes
on the basic theory, regularization procedures, and several il-
lustrative examples. Our goal is to highlight the differences,
special features, and new challenges of these optimization
problems when compared with their more familiar determin-
istic counterparts.

Notation. Throughout this article, (Ω,F ,P) is a com-
plete probability space; X := Lp(Ω,F ,P) for some p ∈ [1,∞]
is the space of p-integrable random variables on Ω; the phys-
ical domain D ⊂ Rn, n ∈ N, is an open bounded set with
Lipschitz boundary ∂D; the control (decision variable, de-
sign, etc.) space Z is a Hilbert space; Zad ⊆ Z is a set of
feasible controls; and the deterministic state space U = U(D)
is a reflexive Banach space.

2 Problem Formulation

Before introducing the general problem formulation, we pro-
vide two motivating examples. We start with an example
from gas pipeline management.

Example 1 (Optimal Management of a Gas Pipeline [7]).
The goal of optimal pipeline management is to transmit con-
tracted amounts of gas from supplier to end customer at
the lowest possible cost by controlling (i.e., scheduling) com-
pressor activity. Unfortunately, fluctuating pipeline condi-
tions such as future demands (which are affected by weather
and market conditions), ambient temperatures at compres-
sor stations leading to variable compression capacity, and
equipment availability introduce uncertainty that must be
mitigated by any reasonable compressor schedule. For ex-
ample, a pipeline operator typically does not know far in

advance whether a power plant will come online and for how
long it will be online.

We can formulate the pipeline management problem as
an optimization problem with constraints resulting from, for
example, compression capacities and end customer demands.
In addition, we can model the flow of gas through the pipeline
as a system of nonlinear hyperbolic PDEs. Since the pipeline
conditions are uncertain, the solution of this system of PDEs,
in other words, the distribution of gas within the pipeline
(which is called the line pack), is random. As a result, the
objective function, which depends on the line pack, is also
random and thus cannot be directly minimized. �

Stochastic PDE-constrained optimization problems also
naturally arise in manufacturing applications.

Example 2 (Topological Design with Manufacturing Vari-
ability [28]). Optical projection lithography is a widely used
manufacturing technique in which a design (mask) is trans-
ferred onto a substrate via UV light. When building micro-
and nano-mechanical devices using optical projection lithog-
raphy, a number of uncertainties arise due to, for example,
the inherent diffraction properties of the lithographic system.
As a result, the manufactured device is typically a distorted
version of the mask and therefore no longer represents the
original design. To account for this, one usually employs a
two-step procedure that consists of a blueprint design phase
followed by optical proximity correction (OPC). Although
OPC accounts for a number of process variations, a residual
always remains; and therefore in the worst case the resulting
device need not even be functional.

By accounting for the manufacturing variability when for-
mulating the optimal design problem, we can determine a
mask that mitigates uncertainty and therefore does not re-
quire the two-phase procedure. Aside from constraints ac-
counting for the lithography process and volume restrictions,
the mechanical properties of the design are often modeled by
using linear elasticity. As in the previous example, the man-
ufacturing variability transfers to the solution of the linear
elasticity equations, thus ensuring that the PDE solution is
random. Therefore, the objective function to be minimized
is a random variable. �

In general, we can represent the governing PDE or system
of PDEs by the nonlinear equation

e(u, z, ω) = 0, (1)

which we require to hold almost surely (a.s.). That is, a
solution u to (1) is required to satisfy (1) only on a subset of
Ω with probability equal to one. Here, z ∈ Zad is a control
variable and u(ω) = [S(z)](ω) is the solution of the equation
for fixed z and ω ∈ Ω, i.e., u is a random field.

In the deterministic setting (i.e., S(z) is deterministic), our
goal is to minimize some objective function J that depends
on the PDE solution u, potentially subjected to auxiliary
constraints or penalties on z. When the PDE solution is a
random field, however, evaluating J at (S(z), z) results in
a random variable that cannot be directly minimized. This
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puts us in the setting of stochastic programming. In partic-
ular, any reasonable control should, in some sense, mitigate
uncertainty. Since the control z is typically implemented
prior to observing the state and its uncertainty, z cannot an-
ticipate this uncertainty; rather, it must be a “good” control
for all possible scenarios (i.e., z is deterministic).

Fortunately, decades of research in stochastic program-
ming have produced a multitude of techniques for formulat-
ing this problem. For example, we could employ the robust
optimization approach [4] and solve

min
z∈Zad

sup
P∈A

EP [J(S(z))]

where A is a subset of probability measures on (Ω,F). An-
other possibility would be to use probabilistic functions or
stochastic orders [19, 22]. For example, we might try

min
z∈Zad

P({ω ∈ Ω | [J(S(z))](ω) ≥ τ}),

where τ ∈ R is a prescribed threshold. This formulation can
be challenging to analyze and solve because of potential non-
convexity and nonsmoothness, despite any nice properties of
the solution map z 7→ S(z) and the objective J . A third op-
tion is to incorporate functionals R known as risk measures,
which lead to problems with the general structure

min
z∈Zad

R[J (S(z))] + ℘(z). (2)

Here, R : X → R := R ∪ {+∞} assigns a numerical value
(with the same units) for the random cost J(S(z)) and
℘ : Z → R is the cost of z. Based on duality theory for
convex functions, risk-averse optimization is directly related
to robust optimization especially in the case when R is co-
herent.

Many possibilities for R exist. The most well known are
perhaps the expectation (not quite a risk measure per se)
and the mean-plus-deviation (R = E + D). By axiomatiz-
ing risk aversion in the context of mathematical finance, the
authors in [3] suggested that a “reasonable” functional R in
(2) should satisfy the following properties.
Let X,X ′ ∈ X , c ∈ R and t > 0.

(C1) Subadditivity: R[X +X ′] ≤ R[X] +R[X ′].

(C2) Monotonicity: If X � X ′, then R[X] ≥ R[X ′].

(C3) Translation equivariance: R[X + C] = R[X] + C.

(C4) Positive homogeneity: R[tX] = tR[X].

A functional R that satisfies these axioms is called a co-
herent risk measure. Although we are not necessarily in the
setting of finance or economics, the justifications for using
this class are similar for optimal design problems in engi-
neering. For example, (C4) ensures that a change of units of
X results in a change of units ofR[X] (i.e., X andR[X] have
the same units). Moreover, (C3) ensures that deterministic
quantities, such as the control cost ℘(z), do not affect the
risk. In fact, (C3) and (C4) ensure that R[c] = c for any
c ∈ R.

Perhaps the most popular coherent risk measure is the
average or conditional value at risk (CVaR) defined by

CVaRβ [X] := inf
t∈R

{
t+

1

1− β
E
[
(X − t)+

]}
,

where β ∈ (0, 1) and (·)+ := max(0, ·). Note that whenever
the cumulative distribution function (cdf) of X, FX(t) :=
P({ω ∈ Ω |X ≤ t}), is continuous, CVaRβ reduces to the
upper tail average

CVaRβ [X] = E
[
X|X ≥ F−1X (β)

]
,

where F−1X (β) is the β-quantile of X. Therefore, by using
CVaR we are attempting to make decisions z that compen-
sate for large upper tail events.

In any case, the axioms for coherent risk measures (or
a subset thereof) enable the development of an existence
and optimality theory similar to that of deterministic PDE-
constrained optimization. However, difficulties arise due to
the potential nonsmoothness of R and the differentiability
properties of (J ◦ S). We forego a discussion of sufficient
conditions for differentiability and refer the reader to [13].
For now, we set

F (z) := J (S(z))

and note that the main difficulty in proving the existence of
solutions to (2) lies in demonstrating the weak-lower semi-
continuity of the composite objective (R◦F ). Furthermore,
an integral part to deriving optimality conditions for (2) is
the subdifferentiability of R and the Fréchet differentiability
of the superposition operator J (S(z)) := (J ◦ S)(z).

With that said, under certain regularity assumptions we
can show that (2) indeed has an optimal solution. Further-
more, for any optimal solution z? to (2), there exists ϑ? ∈ X ∗
such that

〈E[ϑ?∇F (z?)], z − z?〉+ ℘′(z?; z − z?) ≥ 0, ∀ z ∈ Zad (3a)

R[X]−R[F (z?)] ≥ E[ϑ?(X − F (z?))], ∀ X ∈ X . (3b)

Using our original notation, we can rewrite (3) in a form
that is perhaps more familiar to readers specializing in PDE-
constrained optimization. That is, if z? ∈ Zad is an optimal
solution to (2), then there exists a triple (u?, λ?, ϑ?) such
that (3) holds with ∇F (z?) = ez(u

?, z?, ·)∗λ?, where u? and
λ? solve

e(u?, z?, ·) = 0 a.s. (4a)

eu(u?, z?, ·)∗λ? + Ju(u?) = 0 a.s. (4b)

Here, eu, ez, and Ju denote partial derivatives of e and J .
Note that u? in (4a) is the solution to the governing PDE
whereas the λ? in (4b) is the solution to the adjoint equa-
tion (i.e., the multiplier associated with (4a)) and requires
a linearized PDE solve. In addition to the state equation
(4a), the adjoint equation (4b), and the usual variational in-
equality associated with the constraints on z (3a), there is a
variational inequality of the second kind (3b) stemming from
the definition of the subdifferential of R at J (u?).
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In the “risk-neutral” case (i.e., R ≡ E), ϑ? ≡ 1, and
(3b) disappears. In a similar fashion to deterministic PDE-
constrained optimization, we could solve the resulting opti-
mality system using a semismooth Newton solver that has
been appropriately extended to handle the additional inte-
gral over Ω. As mentioned in the introduction, however, the
dimension of the discretized problem is significantly larger
than that of the deterministic problem. Therefore, special
care must be taken when discretizing the random quantities.

An alternative method for solving the risk-neutral prob-
lem is the adaptive trust-region algorithm developed in [12].
There, the random PDE is discretized by using adaptive
sparse grid collocation. For these optimization problems,
we must keep the sparse grid size as small as possible to
avoid excess PDE solves. However, we must also ensure that
the approximation quality of the sparse grid is sufficient to
ensure convergence of the algorithm in the original infinite-
dimensional setting. To achieve these goals, the trust-region
algorithm employs quadrature error indicators to refine the
approximation quality of the objective function value and
gradient as the algorithm converges.

Similar to the risk-neutral case, if R is differentiable at
J (u?), then (3b) disappears since ϑ? = ∇R[J (u?)]. One
could then extend the adaptive trust-region approach in [12]
to the case of differentiable risk measures by developing the
appropriate quadrature error indicators. Nevertheless, co-
herent risk measures, including CVaR, are in general not
differentiable.

3 Regularizing Risk Measures

The discussion in Section 2 suggests that in many cases
the nonlinear coupling between (3a) and (3b) may compli-
cate the development of both generalized Newton-type and
derivative-based nonlinear programming solvers. One ap-
proach to circumventing this difficulty is to regularize or
smooth the risk measure and then perform continuation on
the associated smoothing parameter. Such techniques are
standard in PDE-constrained optimization with constraints
on the PDE solution variable.

Ignoring the function space setting and considering a fully
discretized problem, we might try to apply an off-the-shelf
bundle method for nonconvex, nonsmooth optimization di-
rectly. Our next example demonstrates that this approach
may not be the best course of action.

Example 3 (Optimal Control of Stationary Viscous Burg-
ers’ (see [14])). Given α = 10−3 and D = (0, 1), consider the
stochastic program

min
z∈L2(D)

1

2
CVaRβ

[
‖S(z)− 1‖2

]
+
α

2
‖z‖2, (5)

where ‖ · ‖ denotes the L2(D)-norm and u = S(z) : Ω → U
solves (the weak form of) Burger’s equation with uncertain
inputs:

− ν(ξ)
∂2u

∂x2
+ u

∂u

∂x
= f(ξ, ·) + z in D (6a)

with boundary conditions

u(·, 0) = d0(ξ) and u(·, 1) = d1(ξ). (6b)

Here, ξ : Ω → Ξ = [−1, 1]4 is a uniformly distributed
random vector, and the random coefficients are ν(ξ) =
10ξ1−2, f(ξ, x) = ξ2

100 , d0(ξ) = 1 + ξ3
1000 , and d1(ξ) = ξ4

1000 .
To obtain a finite-dimensional nonlinear program, we dis-

cretize in space using continuous piecewise linear finite ele-
ments on a mesh of 256 intervals split into three subdomains
Ω ∪ ∂Ω = [0, 0.2] ∪ (0.2, 0.8) ∪ [0.8, 1]. We partition the first
subdomain with 80 uniform intervals, the second with 16 uni-
form intervals, and the third with 160 uniform intervals. We
discretize the control analogously. For the random inputs,
we use Q = 10,000 Monte Carlo samples. After discretiza-
tion, we solve the resulting nonconvex, nonsmooth optimiza-
tion problem using the trust-bundle method of Schramm
and Zowe [21] for three values of the CVaR confidence level
β ∈ {0.1, 0.5, 0.9}. Notice that for any β, we require roughly

Table 1: (Example 3) Number of iterations required by the trust-
bundle algorithm to satisfy the prescribed stopping conditions for
(5).

β 0.1 0.5 0.9
Iterations 9,740 10,035 10,128

2 × 108 PDE solves to obtain the desired stopping toler-
ance (see Table 1). This is an unrealistically high number
of forward and adjoint solves for a toy example. Moreover,
the algorithm terminates at a point that may not satisfy the
optimality system (even approximately). The stopping crite-
rion for the trust-bundle algorithm is fulfilled when the norm
of the aggregate subgradient, an average of subgradients at
previous proximal iterates, is sufficiently small. The relation
to the first-order system (3)–(4) is unclear.

In contrast, we can smooth CVaR by using, for example,

Rβε [X] := inf
t∈R

{
t+

1

1− β
E
[
(X − t)+ε

]}
,

where (·)+ε is a C1-smoothing of the plus function. We can
then approximately solve (5) with a sequence of smooth-
ing parameters εk ↓ 0 (assuming small ε is better) using
derivative-based optimization methods for each k [14]. As-

Table 2: (Example 3) Behavior of a trust-region algorithm ap-
plied in conjunction with smooth CVaR. The numbers in paren-
theses are the average number of truncated CG iterations per
trust-region iteration rounded to the nearest integer.

log(ε)
0 -1 -2 -3 -4 -5

0.1 4(13) 4(14) 6(19) 16(6) 26(5) 44(4)
β 0.5 4(17) 4(17) 5(19) 7(22) 7(23) 22(10)

0.9 5(17) 6(16) 13(13) 16(11) 19(10) 127(3)

suming ε = 10−5 results in an acceptable approximation of
CVaR, we require roughly 8 × 106 PDE solves to obtain a
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control that satisfies a “nearby” first-order system up to the
prescribed stopping tolerance of 10−8 (see Table 2). That is,
smoothing combined with a Newton-type algorithm reduces
the computational work by a factor of 25 and produces a
solution that is guaranteed to be “nearly” stationary. �

Several possibilities exist for smoothing risk measures. In
[14] we use a density-smoothing technique and a dual method
that is equivalent to Moreau-Yosida regularization for the
case when R = CVaR. Another possibility is to use infi-
mal convolutions with smooth potential functionals, which
we refer to as “epi-regularization” [15]. We briefly describe
the latter because it has a number of favorable properties,
including the consistency of both minimizers and stationary
points (i.e., convergence as ε ↓ 0) as well as a guaranteed
convergence rate. For this approach, we work in a more gen-
eral class of risk measures than the coherent risk measures.
A risk measure R is said to be regular (in the sense of Rock-
afellar and Uryasev [20]) provided it is proper, closed, and
convex and satisfies

(R1) R[X] = C for all X ∈ X such that X ≡ C ∈ R

(R2) R[X] > E[X] for all nondegenerate X ∈ X .

These are essential minimal requirements that one would ex-
pect from any reasonable risk measure. (R1) merely states
that something without uncertainty is risk free and (R2) is
a means of axiomatizing the concept of risk aversion.

Definition 1 (Epi-Regularized Risk Measures [15]). Let
X = Lp(Ω,F ,P) with 1 ≤ p < ∞, and suppose that
Φ : X → R is proper, convex and closed and R is a reg-
ular measure of risk. For ε > 0, we define the epi-regularized
risk measure as

Rε[X] := inf
Y ∈X

{
R[X − Y ] + εΦ

[
ε−1Y

]}
.

Without going into the details, we note that under suitable
assumptions one can show that Rε satisfies pointwise error
bounds, converges both pointwise and in the sense of Mosco
to R, and is consistent; that is, ε-dependent global minimiz-
ers converge to global minimizers for the original problem,
and ε-dependent stationary points converge to first-order sta-
tionary points satisfying a system of the type (3). Further-
more, under local smoothness and convexity properties, one
can show that given a solution z?ε for an epi-regularized prob-
lem and z? for the original problem, we have

‖z?ε − z?‖ = O(
√
ε). (7)

One caveat must be noted, however. To obtain the superior
convergence rates (as compared with Monte Carlo) associ-
ated with polynomial-based UQ methods (e.g., sparse-grid
collocation) for approximating Rε[F (z)], one requires that
the random variable to be integrated be sufficiently smooth
as a function of ω. As ε ↓ 0, however, the conditioning of
the derivatives of this integrand decreases, leading to per-
formance degradation for polynomial approximations as well

as derivative-based optimization algorithms. For example, if
Rε[F (z)] is smoothed CVaR, then the integrand is

t+
1

1− β
(F (z)− t)+ε ,

which becomes nonsmooth as ε ↓ 0.
From our viewpoint, two areas are in need of break-

throughs: (i) the development of discretizations for the
underlying random quantities that take into account non-
smooth integrands and (ii) improved algorithms for large-
scale nonsmooth, nonconvex optimization (e.g., better con-
tinuation strategies for smoothed risk measures).

4 Numerical Experiments
We now solve two examples and discuss what one can achieve
by using different risk measures in PDE-constrained opti-
mization under uncertainty. For example, we see how min-
imizing different risk measures shapes the distributions of
J (S(z?)). We also compare the cost of a risk-averse solution
with that of a risk-neutral one. Our technique for solving
these problems is to use epi-regularized risk measures and
basic continuation on ε ↓ 0. Each smooth risk-averse opti-
mization problem is solved by using a trust-region globaliza-
tion of Newton’s method.

Example 4 (Contaminant Mitigation [13]). In this example
we consider a simplified model problem representing the risk-
averse mitigation of an environmental contaminant. Given
nine fixed injection sites, we wish to determine the amount
of chemicals to inject at these sites in order to dissolve the
contaminant and therefore, minimize the cost of contamina-
tion. We model the contaminant transport with a steady
advection-diffusion equation.

Let D := (0, 1) × (0, 1) and ∂D := Γd ∪ Γn with Γd =
{0} × (0, 1) and Γn := ∂D \ Γd. Let κs, κc > 0. Then we
consider the stochastic program

min
z∈Zad

R
[
κs
2

∫
D

S(z)2 dx

]
+ κc‖z‖`1 , (8)

where S(z) = u : Ω→ U solves the weak form of

−∇ · (ε(ω)∇u) + V(ω) · ∇u = f(ω)−Bz in D (9a)

with boundary conditions

ε(ω)
∂u

∂n
= 0 on Γn (9b)

u = 0 on Γd. (9c)

For this problem, the control space is Z = R9, and we set
Zad = {z ∈ Z : 0 ≤ z ≤ 1}.

The random diffusivity is

[ε(ω)](x) = 0.5 + c−1 exp (δ(x, ω)) ,

where the specific form of δ can be found in [18, Sec. 4,
Eqs. 4.2–4] and c := max(x,ω) exp(δ(x, ω)) > 0. The random
advection field V is

[V(ω)](x) =

[
b(ω)− a(ω)x1

a(ω)x2

]
,
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where b ≥ a ≥ 0 P-a.e. and the contaminant source f is the
sum of five Gaussian functions whose locations, widths, and
magnitudes are random. The deterministic bounded linear
operator B is

Bz =

9∑
k=1

zk exp

(
− (x− pk)>(x− pk)

2σ2

)
,

where pk ∈ (0, 1) × (0, 1) are the aforementioned control lo-
cations and σ = 0.05.

We discretize the problem using piecewise linear quadrilat-
eral finite elements in space and Monte Carlo with Q = 1000
samples for the random inputs. By first replacing each of
the random variables with their expected values, we obtain a
deterministic problem, which we refer to as the mean-value
problem (MVP). The left image in Figure 1 depicts Bz?,
where z? solves the MVP. This solution is not risk averse,

Figure 1: Results for Example 4. Bz? for the mean-value prob-
lem (left) and the risk-neutral problem (right).

since it ignores the effects of uncertainty. If instead we
solve the risk-neutral problem, the resulting optimal control
should perform well on average. The right image in Fig-
ure 1 depicts the risk-neutral optimal control. Note that in
this example the solutions to the MVP and the risk-neutral
problem are strikingly similar.

On the other hand, if we choose R to be risk averse, the
solution appears to mitigate uncertainty. For example, in
the left image in Figure 2 we plot the solution corresponding
to the risk measure

R[X] = inf
t∈R
{t+ E[v(X − t)]} ,

where
v(x) = (λ−1exp(λx)− 1)+ − α(−x)+

with λ = 1 and α = 0.75. We introduced and analyzed
this risk measure in [13] under the name conditional en-
tropic risk (CER). The behavior of CER can be best un-
derstood via the scalar regret function v(x), which ensures
that our regret (i.e., displeasure, disutility) grows exponen-
tially for large positive values of x, whereas our regret de-
creases linearly for negative values of x. We plot the cdfs
for five different risk measures (right image in Figure 2).
Without specifying the details of each risk measure, we
simply note how different risk measures can dramatically
influence the shape of the cdf of J (S(z?)). For exam-
ple, while the solutions corresponding to CVaR/CER satisfy
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Figure 2: Results for Example 4. Bz? obtained by using condi-
tional entropic risk measure (left) and the cdfs of the random vari-
able objectives (RVO) J (S(z)) for various risk measures (right).

P(J (S(z?)) ≤ 1.5) ≈ 0.90, the solution to the risk-neutral
problem satisfies P(J (S(z?)) ≤ 1.5) ≈ 0.35. �

Example 5 (Semiconductor Doping Optimization). In this
example, we investigate the effects of nonlinearity on the abil-
ity to shape the distribution of the random objective func-
tional, and we provide experimental evidence for the rate
of convergence obtained using epi-regularized risk measures.
This problem is related to the robust doping optimization of
semiconductor devices, in which one attempts to increase the
current flow over the device contacts by introducing impuri-
ties (i.e., the dopant) into the wafer. A number of important
articles have been written on this topic, we mention here the
early work of Fang and Ito [8, 9].

We consider the stochastic program

min
z∈Zad

R
[

1

2

∫
Do

(1− S(z))2+ dx

]
+
γ

2

∫
D

z2 dx, (10)

where D = (0, 0.6) × (0, 0.2), Do = (0.5, 0.6) × (0.167, 0.2),
γ = 10−2, and u = S(z) : Ω → U solves the weak form of
the semilinear elliptic PDE

−κ(ξ)∆u+ c(ξ) sinh(u) = B(ξ)z + b in D

with boundary conditions

κ(ξ)
∂u

∂n
(·, x) = 0 on ∂D.

The operator B satisfies d = B(ξ)z : Ω→ U and is the weak
solution to the linear elliptic PDE

−r(ξ)∆d+ d = z in D

with boundary conditions

r(ξ)
∂d

∂n
= 0 in ∂D.

Here, we set

κ(ξ) = 2.5× 10ξ1 , c(ξ) = 1.45× 10ξ2 , r(ξ) = 10ξ3 ,
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where ξ1 is uniformly distributed on [−2,−1], ξ2 is uniformly
distributed on [−1, 0], and ξ3 is uniformly distributed on
U [−4,−1], and

b(x) = 12 · 1Db
(x)

whereDb = (0, 0.1)×(0.167, 0.2) and 1Db
denotes the charac-

teristic function of the set Db. We discretize both PDEs us-
ing piecewise linear quadrilateral finite elements, and we ap-
proximate the random inputs ξ = (ξ1, ξ2, ξ3) using Q = 1000
Monte Carlo samples. Furthermore, we set R ≡ CVaRβ and
use Φ[X] = 1

2E[X2] + E[X] for the epi-regularization.
In Figures 3 and 4, we see that with increasing CVaR

confidence level β, the variability in the random objec-
tive decreases as expected. Furthermore, the random vari-
ables J (S(z?)) for larger β stochastically dominate those
for smaller β. Despite a lack of provable convexity for the
optimization problem, we still observe the theoretical con-
vergence rates for the computed optimal controls versus the
optimal solution in Figure 4. �

0 2 4 6

×10
-4

0.4

0.5

0.6

0.7

0.8

0.9

1

Risk Neutral

β=0.1

β=0.2

β=0.3

β=0.4

β=0.5

β=0.6

β=0.7

β=0.8

β=0.9

0 2 4 6

×10
-4

0.4

0.5

0.6

0.7

0.8

0.9

1

Risk Neutral

β=0.1

β=0.2

β=0.3

β=0.4

β=0.5

β=0.6

β=0.7

β=0.8

β=0.9

Figure 3: Results for Example 5. Left: Cumulative distribution
function for the random objective plus control penalty evaluated
at the optimal controls. Right: Cumulative distribution function
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5 Outlook
A vast array of challenges and open problems exists within
the field of PDE-constrained optimization under uncertainty,
including the development of computationally efficient meth-
ods for solving risk-averse PDE-constrained optimization

problems that are sample independent or weakly sample de-
pendent and the development of adaptive methods for cases
other than risk neutral. Other open areas include extending
modern UQ methods for approximating PDEs with uncer-
tain inputs, such as stochastic collocation, polynomial chaos
and other spectral projection methods, active subspaces, and
low-rank tensor approximation, to solve the corresponding
optimization problems constrained by such PDEs.

Aside from numerical issues, open problems exist in for-
mulating stochastic optimization problems constrained by
transient PDEs. For example, how are time-dependent
uncertainties modeled and how are time-dependent con-
trols/decisions implemented? In this case, the issue of time-
consistent risk measures for continuous-time systems looms
large. Recently, some researchers (e.g., [24]) have formulated
such dynamic optimal control problems using the Fokker-
Planck equation, which transforms the governing stochastic
differential equation into a deterministic PDE whose solu-
tion is the probability density of the stochastic state vari-
able. This approach is attractive; however, it requires the
discretization of PDEs with potentially enormous spatial di-
mension.

It is unclear how to formulate state constraints (e.g., con-
straints on displacement or strain in elasticity) when the
PDE solution is uncertain. One promising, albeit challeng-
ing, approach is to enforce state constraints through stochas-
tic dominance, which has clear ramifications in terms of both
theory and numerics.
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Bulletin

1 Event Announcements

1.1 2018 Mixed Integer Programming Work-
shop (MIP 2018)

The 2018 workshop in Mixed Integer Programming (MIP
2018) will be held June 18–21 at Clemson University
(Greenville, South Carolina). The 2018 Mixed Integer
Programming workshop will be the fifteenth in a series
of annual workshops held in North America designed to
bring the integer programming community together to
discuss very recent developments in the field. The workshop
consists of a single track of invited talks and features a
poster session that provides an additional opportunity to
share and discuss recent research in MIP. Registration
details, a call for participation in the poster session, and
information about student travel awards will be made in a
subsequent announcement.

Confirmed Speakers: Bob Bixby, Gurobi; Chen Chen,
Columbia University & Ohio State University; Grard Cor-
nujols, Carnegie Mellon University; Yuri Faenza, Columbia
University; Ricardo Fukasawa, University of Waterloo;
Matthew Galati, SAS; Andres Gomez, University of Pitts-
burgh; Aida Khajavirad, Carnegie Mellon University; Pierre
Le Bodic, Monash University; Quentin Louveaux, Universit
de Lige; Marco Lbbecke, RWTH Aachen; Miles Lubin,
Google; Stephen Maher, Lancaster University; Enrico
Malaguti, Universit di Bologna; Jim Ostrowski, University
of Tennessee; Joe Paat, ETH Zurich; Annie Raymond,
University of Washington; Suvrajeet Sen, University of
Southern California; David Shmoys, Cornell University;
Cole Smith, Clemson University; Wolfram Wiesemann,
Imperial College.

More details are available on the workshop website:
https://or.clemson.edu/mip-2018/.

1.2 23rd International Symposium on Mathe-
matical Programming (ISMP 2018)

The 23rd International Symposium on Mathematical Pro-
gramming (ISMP 2018) will take place in Bordeaux, France,
July 1-6, 2018. The organizers have the great pleasure of
inviting you to prepare contributions to this world congress
of mathematical optimization gathering scientists as well
as industrial researchers and users of mathematical opti-
mization. Plenary, semi-plenary, and keynote speakers for
ISMP2018 have been announced on the conference website
along with their provisional talk titles: https://ismp2018.
sciencesconf.org/resource/page/id/2.

https://or.clemson.edu/mip-2018/
https://ismp2018.sciencesconf.org/resource/page/id/2
https://ismp2018.sciencesconf.org/resource/page/id/2
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The richness of the conference scientific program shall be
further enhanced by the attendees’ contributions that are
organized in parallel sessions by the scientific committee.
These contributions can take the forms of mini-symposium,
invited sessions and contributed presentations. Each at-
tendee can submit at most one talk. Candidate session
organizers are invited to contact the scientific committee for
their particular stream of interest.

Important Dates
February 28, 2018: Abstract submission deadline
April 30, 2018: Early bird registration deadline and
registration deadline for presenting authors

More details are available on the conference website:
https://ismp2018.sciencesconf.org/

2 Book Announcements

2.1 First-Order Methods in Optimization

By Amir Beck
Publisher: SIAM

Series: MOS-SIAM Series on Optimization,

Vol. 25

ISBN: 978-1-611974-98-0, x + 484 pages

Published: 2017

http: // bookstore. siam. org/ mo25/

About the book: The primary goal of this book is to pro-
vide a self-contained, comprehensive study of the main first-
order methods that are frequently used in solving large-scale
problems. First-order methods exploit information on values
and gradients/subgradients (but not Hessians) of the func-
tions composing the model under consideration. With the
increase in the number of applications that can be modeled
as large or even huge-scale optimization problems, there has
been a revived interest in using simple methods that require
low iteration cost as well as low memory storage. The au-
thor has gathered, reorganized, and synthesized (in a unified
manner) many results that are currently scattered through-
out the literature, many of which cannot be typically found
in optimization books.

First-Order Methods in Optimization offers comprehen-
sive study of first-order methods with the theoretical foun-
dations; provides plentiful examples and illustrations; em-
phasizes rates of convergence and complexity analysis of
the main first-order methods used to solve large-scale prob-
lems; and covers both variables and functional decomposition
methods.
Audience: This book is intended primarily for researchers
and graduate students in mathematics, computer sciences,
and electrical and other engineering departments. Readers
with a background in advanced calculus and linear algebra,
as well as prior knowledge in the fundamentals of optimiza-
tion (some convex analysis, optimality conditions, and dual-
ity), will be best prepared for the material.

2.2 Derivative-Free and Blackbox Optimization

By Charles Audet and Warren Hare
Publisher: Springer

Series: Operations Research and Financial

Engineering

ISBN: 978-3-319-68913-5, xviii + 302 pages

Published: 2017

http: // www. springer. com/ us/ book/

9783319689128

About the book: This book is designed as a textbook,
suitable for self-learning or for teaching an upper-year uni-
versity course on derivative-free and blackbox optimization.

The book is split into 5 parts and is designed to be modu-
lar; any individual part depends only on the material in Part
I. Part I of the book discusses what is meant by Derivative-
Free and Blackbox Optimization, provides background ma-
terial, and early basics while Part II focuses on heuristic
methods (Genetic Algorithms and Nelder-Mead). Part III
presents direct search methods (Generalized Pattern Search
and Mesh Adaptive Direct Search) and Part IV focuses on
model-based methods (Simplex Gradient and Trust Region).
Part V discusses dealing with constraints, using surrogates,
and bi-objective optimization.

End of chapter exercises are included throughout as well as
15 end of chapter projects and over 40 figures. Benchmarking
techniques are also presented in the appendix.

Audience: Flexible usage suitable for undergraduate, grad-
uate, mathematics, computer science, engineering, or mixed
classes.

2.3 Formulation and Numerical Solution of
Quantum Control Problems

By Alfio Borz̀ı, Gabriele Ciaramella,
and Martin Sprengel
Publisher: SIAM

Series: Computational Science and Engineer-

ing, Vol. 16

ISBN: 978-1-611974-83-6, x + 390 pages

Published: 2017

http: // bookstore. siam. org/ cs16/

About the book: This book provides an introduction
to representative nonrelativistic quantum control problems
and their theoretical analysis and solution via modern com-
putational techniques. The quantum theory framework is
based on the Schrdinger picture, and the optimization theory,
which focuses on functional spaces, is based on the Lagrange
formalism. The computational techniques represent recent
developments that have resulted from combining modern nu-
merical techniques for quantum evolutionary equations with
sophisticated optimization schemes. Both finite and infinite-
dimensional models are discussed, including the three-level
Lambda system arising in quantum optics, multispin systems

https://ismp2018.sciencesconf.org/
http://bookstore.siam.org/mo25/
http://www.springer.com/us/book/9783319689128
http://www.springer.com/us/book/9783319689128
http://bookstore.siam.org/cs16/
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in NMR, a charged particle in a well potential, BoseEinstein
condensates, multiparticle spin systems, and multiparticle
models in the time-dependent density functional framework.

This self-contained book covers the formulation, analy-
sis, and numerical solution of quantum control problems and
bridges scientific computing, optimal control and exact con-
trollability, optimization with differential models, and the
sciences and engineering that require quantum control meth-
ods.
Audience: This book is intended for mathematicians work-
ing on ODE/PDE control and optimization problems and
the numerical analysis of differential equations; physicists;
chemists; and engineers who focus on quantum control prob-
lems. It is suitable for advanced courses on ODE/PDE
quantum control problems and provides extensively elabo-
rated problems that help the reader develop insight into the
main ideas and techniques of quantum control problems. It
is also suitable for advanced graduate students and scientists
of mathematics, the natural sciences, and engineering.

2.4 Advances and Trends in Optimization with
Engineering Applications

Editors: Tamás Terlaky, Miguel F. An-
jos, and Shabbir Ahmed
Publisher: SIAM

Series: MOS-SIAM Series on Optimization,

Vol. 24

ISBN: 978-1-611974-67-6, xxxiv + 696 pages

Published: 2017

http: // bookstore. siam. org/ mo24/

About the book: Optimization is of critical importance
in engineering. Engineers constantly strive for the best pos-
sible solutions, the most economical use of limited resources,
and the greatest efficiency. As system complexity increases,
these goals mandate the use of state-of-the-art optimization
techniques.

In recent years, the theory and methodology of optimiza-
tion have seen revolutionary improvements. Moreover, the
exponential growth in computational power, along with the
availability of multicore computing with virtually unlimited
memory and storage capacity, has fundamentally changed
what engineers can do to optimize their designs. This is a
two-way process: engineers benefit from developments in op-
timization methodology, and challenging new classes of opti-
mization problems arise from novel engineering applications.

Advances and Trends in Optimization with Engineering
Applications reviews 10 major areas of optimization and re-
lated engineering applications, providing a broad summary
of state-of-the-art optimization techniques most important
to engineering practice. Each part provides a clear overview
of a specific area and discusses a range of real-world prob-
lems.

The book provides a solid foundation for engineers and
mathematical optimizers alike who want to understand the
importance of optimization methods to engineering and the

capabilities of these methods.

Audience: This book will be of interest to doctoral stu-
dents, recent graduates, experienced researchers, and practi-
tioners in engineering, optimization, and operations research.

2.5 Iterative Solution of Symmetric Quasi-
Definite Linear Systems

By Dominique Orban and Mario Arioli
Publisher: SIAM

Series: SIAM Spotlights, Vol. 3

ISBN: 978-1-611974-72-0, xiv + 93 pages

Published: 2017

http: // bookstore. siam. org/ sl03/

About the book: Numerous applications, including com-
putational optimization and fluid dynamics, give rise to block
linear systems of equations said to have the quasi-definite
structure. In practical situations, the size or density of those
systems can preclude a factorization approach, leaving only
iterative methods as the solution technique. Known itera-
tive methods, however, are not specifically designed to take
advantage of the quasi-definite structure.

This book discusses the connection between quasi-definite
systems and linear least-squares problems, the most common
and best understood problems in applied mathematics, and
explains how quasi-definite systems can be solved using tai-
lored iterative methods for linear least squares (with half as
much work!). To encourage researchers and students to use
the software, it is provided in MATLAB, Python, and Julia.

The authors provide a concise account of the most well-
known methods for symmetric systems and least-squares
problems, research-level advances in the solution of problems
with specific illustrations in optimization and fluid dynamics,
and a website that hosts software in three languages.

Audience: This book is intended for researchers and ad-
vanced graduate students in computational optimization,
computational fluid dynamics, computational linear algebra,
data assimilation, and virtually any computational field in
which saddle-point systems occur. The software should ap-
peal to all practitioners, even those not technically inclined.

3 Other Announcements

3.1 2017 SIAM Fellows Announced

Each year, SIAM designates as Fellows of the society those
who have made outstanding contributions to the fields of ap-
plied mathematics and computational science. This year, 28
members of the community were selected for this distinction.

These new Fellows include eight members of the SIAG,
whose citations are included below. Full details on the
SIAM Fellow program can be found at http://www.siam.

org/prizes/fellows/index.php. Congratulations to all
the new Fellows!

http://bookstore.siam.org/mo24/
http://bookstore.siam.org/sl03/
http://fellows.siam.org/index.php?sort=year&value=2017
http://fellows.siam.org/index.php?sort=year&value=2017
http://www.siam.org/prizes/fellows/index.php
http://www.siam.org/prizes/fellows/index.php
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Rama Cont
Imperial College London

For contributions to financial mathe-
matics and stochastic analysis.

Bart De Moor
KU Leuven

For contributions to concepts and algo-
rithms in numerical multilinear algebra
and applications in engineering.

Andreas Griewank
Yachay Tech University, School of Mathemat-

ical Sciences and Information Technology

For fundamental contributions to algo-
rithmic differentiation and to iterative
methods for nonlinear optimization.

Monique Laurent
Centrum Wiskunde & Informatica (CWI),

Amsterdam, and Tilburg University

For contributions to discrete and poly-
nomial optimization and revealing in-
teractions between them.

Lois Curfman McInnes
Argonne National Laboratory

For contributions to scalable numeri-
cal algorithms and software libraries for
solving large-scale scientific and engi-
neering problems.

James Renegar
Cornell University

For fundamental results on continuous
optimization and the interface between
algorithms, numerical analysis, and al-
gebra.

Andrew Sommese
University of Notre Dame

For foundational contributions to the
numerical solution of polynomial sys-
tems and applications of algebraic ge-
ometry.

Marc Teboulle
Tel Aviv University

For fundamental contributions to con-
tinuous optimization theory, analysis,
development of algorithms, and scien-
tific applications.

3.2 Beale-Orchard-Hays Prize

Nominations are invited for the 2018 Beale-Orchard-Hays
Prize for Excellence in Computational Mathematical Pro-
gramming. The Prize is sponsored by the Mathemati-
cal Optimization Society, in memory of Martin Beale and
William Orchard-Hays, pioneers in computational mathe-
matical programming. Nominated works must have been
published between Jan 1, 2012 and Dec 31, 2017, and demon-
strate excellence in any aspect of computational mathemat-
ical programming. ”Computational mathematical program-
ming” includes the development of high-quality mathemati-
cal programming algorithms and software, the experimental
evaluation of mathematical programming algorithms, and
the development of new methods for the empirical test-
ing of mathematical programming techniques. Full details
of prize rules and eligibility requirements can be found at
http://www.mathopt.org/?nav=boh.

Nominations can be submitted electronically or in writ-
ing, and should include detailed publication details of the
nominated work. Electronic submissions should include an
attachment with the final published version of the nomi-
nated work. If done in writing, submissions should include
five copies of the nominated work. Supporting justifica-
tion and any supplementary material are strongly encour-
aged but not mandatory. The prize committee reserves the
right to request further supporting material and justification
from the nominees. The deadline for nominations is January
15, 2018. Nominations should be submitted to Dr. Michael
Grant (mcg@cvxr.com). If you wish to submit a nomination
in writing, please contact Dr. Grant for a mailing address.

http://www.mathopt.org/?nav=boh
mcg@cvxr.com
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Chair’s Column

This is the first issue of SIAG/OPT Views and News in
which I have the good fortune to welcome you. I am deeply
honored to have been elected as chair of the SIAM Activity
Group of Optimization. I am looking forward to exciting
and productive years for SIAG/OPT. The other new officers
are Andreas Waechter (vice chair), Michael Friedlander (pro-
gram director), and Jim Luedtke (secretary/treasurer); and
I am pleased to inform you that Jennifer Erway and Stefan
Wild generously agreed to continue as newsletter editors.

Before turning to other news, I offer my thanks to the pre-
vious leadership team for their great work. The team of Juan
Meza, Martine Labbe, Michael Friedlander, and Kim-Chuan
Toh further strengthened SIAG/OPT, evident by the mono-
tonically growing membership and the outstanding OP’17
conference. As you see, this edition is devoted to a high-
light of the highly successful and record-breaking OP’17 in
Vancouver, May 2017. OP’17 featured seven plenary pre-
sentations by Eva Lee, Jeffrey Linderoth, Zhi-Quam Luo,
Ali Pinar, James Renegar, Katya Scheinberg, and Martin
Wainwright and covered a range of topics, included deep al-
gorithmic and complexity issues, applications, and emerg-
ing areas such as optimization in machine learning. The
two minitutorials by Pascal Van Hentenryck and Daniel Bi-
enstock (Optimal Power Flow) and by Francis Bach and
Mark Schmidt (Stochastic Optimization for Machine Learn-
ing) demonstrated both the power of optimization to solve
relevant problems, and the community’s interest in emerging
areas of research. This landmark conference attracted an un-
precedented 709 participants. The continued growth of our
membership and size of our conferences proves the growing
popularity and relevance of optimization and the strength
of our community. The conference offered ample opportuni-
ties to meet old and new friends, to discuss research, and to
further strengthen the fabric of our great community.

Talking about successes and notable achievements, indeed,
we had a lot to celebrate. Several SIAG/OPT colleagues
were selected as SIAM Fellows: Gang Bao, Thomas Cole-
man, Michael Hintermüller, Andrew Knyazev, James Nagy,
Cynthia Phillips, and David Williamson in 2016; Rama
Cont, Bart De Moor, Andreas Griewank, Monique Lau-
rent, Lois McInnes, James Renegar, Andrew Sommese, and
Marc Teboulle in 2017. I encourage all of you to take the
time to nominate our exceptional colleagues for SIAM’s Dis-
tinguished Fellows classes. I also congratulate the 2017
SIAG/Optimization prize winners Jérôme Bolte, Shoham
Sabach, and Marc Teboulle. On behalf of the winning team,
Shoham Sabach from Technion Israel Institute of Technology
gave an excellent lecture on their paper “Proximal Alternat-
ing Linearized Minimization for Nonconvex and Nonsmooth
Problems.” Congratulations to all Fellows and winners!

Our membership in numbers is healthy, well over 1,150
total members. With small variation, the number of non-
student members holds steady around 570, while the number

of student members increased significantly from 386 in 2014
to 613 in 2017. I hope that all our members remain dedi-
cated members of our SIAG/OPT for many years to come,
and you that share our enthusiasm and encourage students,
friends, and colleagues to sign up for the Optimization Ac-
tivity Group of SIAM. Please also remember that students
at many of our universities receive free membership, and it’s
a great way for them to get to know SIAM and to boost their
professional network through SIAG/OPT.

You may already be thinking of attending OP’20, our next
optimization conference. In Vancouver, during the business
meeting, we had a presentation by colleagues from Hong
Kong about the opportunity to have OP’20 at Hong Kong
Polytechnic University. The proposal was well prepared and
well received. After OP’17 we and the SIAM office had fur-
ther details of the proposal clarified and decided that the
2020 SIAM Conference on Optimization will be held May
26–29, 2020 at Hong Kong Polytechnic University. The local
organizing committee co-chairs are Xiaojun Chen and De-
feng Sun, and I will have the honor of serving as conference
co-chair with Defeng Sun. This structural overlap will en-
sure seamless collaboration and information flow between the
two committees. All this has been approved by SIAM, so we
are looking forward to another celebration of the advances
of optimization research at OP’20 in Hong Kong!

Another important action item from the Vancouver busi-
ness meeting was to explore the possibility of establishing
another SIAM Optimization Prize. The attendees supported
the initiative, noting that other SIAGs already have student
or early-career prizes and that having another prize would be
good PR for SIAG/OPT and would enable us to recognize
emerging stars in optimization. During the summer the lead-
ership team regularly met (by Skype, phone, and e-mails) to
discuss what the second SIAM Optimization Prize should be.
We developed a proposal to establish an early-career prize,
and the proposal is in SIAM’s hands to verify for consistency
with other SIAM prizes and to approve or request modifica-
tion.

I have another request. Recently, our program director,
Michael Friedlander, announced that SIAG/OPT has been
asked to sponsor a set of minisymposia for the SIAM Annual
Meeting (AN18), to be held in Portland, OR, July 9–13,
2018. Minisymposium proposals should be sent to Michael
Friedlander (mpf@cs.ubc.ca) by January 3, 2018. Please
contribute to a strong optimization presence at AN18!

I wish all of you a wonderful holiday season, and a very
happy and productive 2018!

Tamás Terlaky, SIAG/OPT Chair
Department of Industrial and Systems Engineering, P.C
Rossin College of Engineering and Applied Science, Lehigh
University, Bethlehem, PA 18015-1582, USA, terlaky@

lehigh.edu, http://www.lehigh.edu/~tat208

mpf@cs.ubc.ca
terlaky@lehigh.edu
terlaky@lehigh.edu
http://www.lehigh.edu/~tat208
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