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We thank the contributors to the 35th issue of the STAM
Activity Group on Optimization’s newsletter. The theme of
this issue is “optimization and imaging”, with an article on
phase retrieval by D. Russell Luke and nonnegative matrix
factorization by Nicolas Gillis. We hope you enjoy this latest
installment of Views and News.

Congratulations to the new officers for the SIAM Activity
Group on Optimization: Taméas Terlaky, Andreas Waechter,
Michael Friedlander, and James Luedtke. Thank you for
agreeing to serve our activity group for the next three years.

Many of you have written to opt for an electronic copy of
Views and News; for the others among you, please do not
hesitate to contact us to opt out of receiving physical copies.

As always, we welcome your feedback, (e-)mailed directly
to us or to siagoptnews@lists.mcs.anl.gov. Suggestions
for new issues, comments, and papers are always welcome!

Stefan Wild, Editor

Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, USA, wild@anl.gov, http://www.mcs.
anl.gov/~wild

Jennifer Erway, Editor

Department of Mathematics, Wake Forest University, USA,
erwayjb@wfu.edu, http://www.wfu.edu/~erwayjb

Articles

Phase Retrieval, What’s New?
D. Russell Luke

Institut  fir Numerische und Angewandte
Mathematik,
Universitdt  Gottingen, 37083 Géttingen,
Germany.

E-Mail: r.luke@math.uni-goettingen.de
http://num.math.uni-goettingen.de/~r.

luke

Ask an engineer to solve a problem and she will come back
in a day or so with something that seems to work well enough
most of the time. Ask a mathematician to solve the same
problem and he will return many months later with an exact
but unimplementable solution to a different problem. I'm
sure most readers of this newsletter have heard some varia-
tion of that joke. But a true story lies somewhere in there,
a story that is writ large with the phase retrieval problem.

The phase retrieval problem has been around for more than
a century, and it is solved tens of thousands of times each
second, mostly by physicists. Phase retrieval plays a cen-
tral role in the x-ray imaging experiments conducted by
researchers here in Goéttingen, where we are in the last 5-
year funding cycle of a 15-year collaborative research center
studying nanoscale photonic imaging (Deutsche Forschungs-
gemeinschaft CRC755). The center consists of experimental
physicists and biomolecular physicists building new instru-
ments and observation techniques (one of those techniques,
STED, won center participant Stefan Hell a Nobel Prize in
2014) as well as mathematicians studying algorithms, im-
age processing, and statistics. Phase retrieval is an applied
mathematician’s dream problem: it is central to many imag-
ing modalities, it is simple to state, numerical routines for
its solution abound, and it is mathematically interesting in
ways that solving systems of linear equations will never be.

Nick Trefethan wrote in his introduction to a 2002 STAM
Review article on phase retrieval that I wrote together with
Jim Burke and Rick Lyon [42], “A Google search of ‘phase re-
trieval’ returns 271, 000 records.” Almost fifteen years later,
a Google search returns 364, 000 records (with the safe search
on). A Web of Science™ database search back to 1945 yields
8,924 results, 7,189 of those since 2002, more than half of
those since 2011. A lot of new interest has been expressed
recently in particular within some corners of the statistics
and applied mathematics communities. Apparently, money
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also is at stake, as I learned in preparation for this article.
So, if the problem has been around for so long and peo-
ple are already solving it—-Hauptman and Karle won a Nobel
Prize in 1985 for solving the crystallographic phase retrieval
problem—what’s all the recent fuss about?

For those who don’t know what phase retrieval is, it is
simply stated as follows: Find z € C C C" such that
|(Fyz)|; = bjk, where for k = 1,2,..., K the mapping
F: C" — C™ is linear and b, € Ry forall j =1,2,...,m
and £k = 1,2,...,K. The classical problem comes from
diffraction imaging where the set C is some a priori con-
straint like support or nonnegativity, and the mapping Fj, is
a Fourier transform of some kind. This includes the Fresnel
transform and some defocused or otherwise imperfect Fraun-
hofer transform. The structure of the model is simple: the
components of the vectors Fx must lie on circles of a given
radius in the complex plane. Unfortunately, circles are not
convex (the sphere does not contain any line segment joining
any two points on the sphere), causing all sorts of problems,
both mathematical and practical. The first statement of the
phase problem that I could find goes back to a letter from J.
W. Strutt (Lord Rayleigh) to Michaelson in 1892 [53]. Lord
Rayleigh was pessimistic about the prospects of breaking the
phase barrier unless a priori information about symmetry
was known. A solution to the band-limited phase problem
is a zero of a related complex polynomial. T’ll come back
to the qualifier “band limited” in a moment, but ignore that
detail for now. In the 1950s Akutowicz [1, 2] showed that the
one-dimensional phase retrieval problem without any a pri-
ori constraints has many solutions, since by the fundamental
theorem of algebra, all 1D complex polynomials factor into
products of monomials. A lot of workarounds for the un-
constrained 1D phase retrieval problem have been developed
since the 1970s [17, 25, 31, 50, 52, 57, 58, 7], all of which
involve adding a constraint implicitly or explicitly. Some re-
cent progress on the 1D problem has come from initialization
techniques that land one in a neighborhood of the minimum
phase solution [30] where the usual nonlinear programming
techniques can perform reliably.

At the end of the 1970s Bruck and Sodin [10] pointed out
that the fundamental barrier to unconstrained 1D phase re-
trieval does not apply in higher dimensions since, magically,
polynomials of dimension two or more almost never factor.
This conformed nicely with the unreasonable success of the
simple Gerchberg-Saxton [23] and HIO [21] algorithms for 2D
phase retrieval proposed a few years earlier. Shortly there-
after Hayes [24] proved that for band-limited signals, the 2D
phase retrieval problem has unique solutions, almost surely,
up to rotations, shifts, and reflections. One might conclude
that the book on phase retrieval was closed a long time ago,
except that the theory didn’t quite match up with practice
as nicely as one would hope. The first hint that the story
is more complicated came from the algorithms themselves.
They worked fairly well a lot of the time, but one of the more
popular approaches, HIO, never worked in the usual sense of
convergence to a fixed point. Still today, people continue to
apply HIO according to the following recipe: run 10-40 itera-

tions of HIO; then apply several passes of Gerchberg-Saxton
to clean up the image; publish.

I have the fortune of being coauthor with Heinz Bauschke
and Patrick Combettes of a paper on phase retrieval algo-
rithms that gets a steady stream of citations [3]. Unfortu-
nately, fewer people read it than cite it. We started from
the premise that really only a handful of good first-order
algorithms exist and that anything that works is probably
a tweak of one of those. It was known before our paper
that Gerchberg-Saxton and the error reduction algorithm
[21] are simply alternating projections (one of the handful
of good algorithms). We were able partially to identify HIO
for the case of a support constraint alone by showing the
correspondence between this procedure and the now ubig-
uitous Douglas-Rachford algorithm. In a follow-up paper
[4] we showed that HIO with a support and nonnegativity
constraint becomes a different fixed-point iteration, what we
called the hybrid projection reflection (HPR) method (not
one of the handful). This fundamental change in the fixed-
point mapping by a seemingly minor change in the constraint
structure is not obvious when the algorithms are written in
the format favored in the optics literature. At the same time
the HPR method was presented, Veit Elser introduced his
difference map [19], which for certain parameter values coin-
cides with the Douglas-Rachford and HPR algorithms, again
depending on the constraint structure [38]. The instabilities
of these algorithms together with the insight provided by
the more mathematical prescription of the algorithms led me
to propose a relaxation of the Douglas-Rachford algorithm,
which T called RAAR, that has fixed points when Douglas-
Rachford does not [39]. At that time, alternating projec-
tions, Douglas-Rachford, HPR, and RAAR algorithms were
understood only for convex problems. In the convex set-
ting Douglas-Rachford can be identified with the alternating
directions method of multipliers [22], which is currently pop-
ular for large-scale problems. For nonconvex problems, how-
ever, our understanding of Douglas-Rachford and even alter-
nating projections, and hence everything else close to these,
pretty much evaporated. Since then a lot of quiet, patient
work has been done in the variational analysis community
to develop the theory of first-order methods for nonconvex
problems, and much of the missing theory behind the success
of these algorithms for phase retrieval is in place. But I get
ahead of myself.

Almost any article on phase retrieval in the applied math-
ematics literature will start with a statement like “The phase
retrieval problem is found in many different areas of sci-
ence and engineering, such as x-ray crystallography, astron-
omy, diffraction imaging, and more.” So I contacted several
physicists and astronomers to find out from them what is
new in phase retrieval. One place where efficient solutions
to the phase retrieval problem is of vital importance is the
W. M. Keck Observatory. The Keck instruments need to
correct for random aberrations in the Earth’s atmosphere
in order to compete with instruments such as the Hubble
Space Telescope. The shape of the atmosphere is encoded
in the phase of the observations. Sam Ragland, an adap-
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tive optics scientist at Keck, told me that their instruments
use Shack-Hartmann sensors to measure the phase directly.
This is a hardware solution to the phase problem. Keck’s
wavefront controllers operate at a rate of 2 kHz, 1 kHz in
practice. Ragland did say that they were testing a computa-
tional phase-diversity algorithm (phase retrieval with several
defocused images), for which they are at the moment using
just the Gerchberg-Saxton algorithm.

The cost of the Shack-Hartmann sensors is photons, which
are in short supply in more modern x-ray imaging set-ups.
The dominant approach here is computational phase re-
trieval, although recent proposals involve adding random
masks to the imaging systems in order to avoid nonunique-
ness in the numerical reconstructions. With regard to al-
gorithms for phase retrieval, Elser, an expert in diffraction
x-ray imaging at Cornell University, has seen “nothing sig-
nificant” in the past 5 years. He is even more dismissive of
the impact of random masks: “The integrity of those phase
masks has to be established at the same resolution as their in-
tended application — and for that you need a phasing system
that works at that resolution!” This is a fundamental chal-
lenge for nanoscale (i.e., x-ray) imaging. Pierre Thibault,
an expert in blind ptychography (the second worst phase
retrieval problem one can encounter) at the University of
Southampton, is more circumspect. Algorithms such as al-
ternating projections, HPR, Douglas-Rachford, RAAR, and
the difference map work just fine, according to Thibault; “the
biggest bottleneck is hardware.” While Thibault has found
no use for random masks in his work, he would not discount
the possibility that the idea of randomly generated data
could have unforeseen applications. One such possibility he
mentioned was Fourier ptychographic microscopy, which iter-
atively stitches together a number of variably (i.e., randomly)
illuminated, low-resolution intensity images in Fourier space
to produce a wide-field, high-resolution complex sample im-
age [56, 59]. The idea that more Fourier measurements can
improve the performance of phase retrieval algorithms has
been around for a while. For crystallographic phase retrieval
there is only so much information you can get out of the
intensity measurements. But in the early 2000s it was rec-
ognized that for noncrystallographic measurements one is
not limited to sampling on a fixed lattice and that oversam-
pling dramatically improves numerical reconstructions [45].
Unfortunately, this improved performance is attributed to
some form of uniqueness. This is curious since a few mo-
ments of reflection on elementary Fourier analysis is all that
is needed to be convinced that oversampling has nothing to
do with uniqueness. Increased, but still finite, sampling in
the Fourier domain just pushes the error created by trying to
reconstruct a compactly supported object from finitely many
Fourier measurements to some level below either numerical
or experimental precision.

The oversampling justification is just one example of a
fixation on uniqueness that has overshadowed the most ob-
vious structural problem for phase retrieval: existence. Re-
member the “band-limited” qualifier in Hayes’ result cited
earlier. What that means is a compactly supported Fourier

transform. And, what that means is that the object must
be periodic. At this point many people retreat to the dis-
crete Fourier transform, which is a unitary linear operator,
about the best kind of operator one can have — except that
the best physical model we have for describing what we mea-
sure in any physical experiment is a sample of the continuous
Fourier transform. And when you implement phase retrieval
on a computer, you cannot avoid implicitly setting the val-
ues of the part of the Fourier spectrum that you do not mea-
sure to zero. So almost any constraint—in particular compact
support—that you place on the object whose Fourier trans-
form you sample will be inconsistent with the measurement.
One exception is crystallography, where (perfect) crystals are
indeed periodic and the Fourier transform can be assumed
reasonably to be band limited. The most exciting and dif-
ficult imaging challenges today, however, are in noncrystal-
lographic “single-shot” x-ray imaging [48, 20]. I mentioned
that blind ptychography is the second hardest type of phase
retrieval problem you might encounter. Blind ptychography
[26, 55, 44, 29] is akin to reading a fragment of an ancient
text in a script you have never seen, with a pair of glasses
borrowed from someone you have never met, and being asked
to reconstruct simultaneously the script and the prescription
of the glasses. For single-shot x-ray imaging the script con-
sists of 3D figurines floating randomly in midair and of which
you get only brief flashes from a strobe light. Phase retrieval
is the easy part for reconstructions from single-shot data -
the challenging part is the tomographic reconstruction of the
Fourier data. Unfortunately, for much of the more recent
mathematical work directed at phase retrieval to have any
traction, uniqueness is essential; but for these more modern
applications even existence of a solution to the model equa-
tions together with qualitative constraints cannot be taken
for granted.

The recent work in applied mathematics on phase retrieval
has its roots in a series of now-famous papers by Candes and
Tao [14, 13], which showed that under certain conditions
on the matrix generating an affine subspace of R™ (called
the restricted isometry property in the literature), there is
a unique sparsest point in the subspace and, moreover, this
point is the point with smallest ¢1-norm. When the space is
a space of matrices, the uniqueness is up to orbits, and the
elements of the orbits have smallest nuclear norm. This has
sparked a wave of papers on convex (and even nonconvex)
relaxation in the signal processing community since finding
a point in an affine subspace with minimum norm is a con-
vex optimization problem while the problem of minimizing
the counting function subject to an affine constraint is non-
convex and NP-hard [47]. Bloomensath and Davies [8, 9]
ran against the current, however, and examined a simple
forward-backward prox-algorithm, iterative hard threshold-
ing, for solving a slightly different problem of minimizing
the norm of the residual in the image space subject to a
sparsity inequality constraint in the domain. They showed
that under an asymmetric generalization of the restricted
isometry conditions required for the correspondence of the
nonconvex sparsity optimization problem and its convex re-
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laxation, iterative hard thresholding converges globally to
the global solution of the sparsity-constrained residual mini-
mization problem. Their work inspired me and my students
Robert Hesse and Patrick Neumann to show that the same,
or similar, conditions also guarantee global linear conver-
gence of alternating projections for the problem of finding
the intersection of an affine subspace and the set of vectors
with sparsity less than a given value [28]. We also showed
that the asymmetric restricted isometry conditions for global
convergence of alternating projections imply transversality of
the range of the transpose of the matrix generating the affine
subspace and the orthogonal complement of all subspaces of
dimension twice the dimension of the sparsest element. A
consequence, which has not been much explored, is that there
cannot be any locally optimal solutions for this nonconvex
problem other than the unique global minimum. Apparently,
convex relaxations are not even needed for problems with this
structure.

The connection to phase retrieval, pointed out first by
Candés, Eldar, Strohmer, and Voroninski [12], uses a well-
known trick from conic programming for turning a quadratic
function on R™ into a linear function on the space of nxn ma-
trices. The price to pay for this is in going from a problem
with n unknowns to a problem with n? unknowns. Struc-
turally, however, the problem in the space of matrices is the
same as the spasity optimization problem above. There was
some hope that this would lead to a breakthrough in phase
retrieval by solving a convex problem in the space of matri-
ces. But the prospect of squaring the number of unknowns
should have given pause to even the most ardent booster of
Moore’s law. Phase lift, as this idea is called in the litera-
ture, has not proven to be a reasonable computational strat-
egy. In the past two years there has been some backing away
from phase lift as an algorithm, and more direct nonconvex
methods are again being proposed (see [32] and references
therein). No one from the applications side that I spoke to
for this article was aware of these newer methods, however.
One reason could be that none of the newer methods has
been compared with the methods favored in the optics com-
munity. Reference to methods such as Gerchberg-Saxton and
HIO and the identification with classical algorithms made in
[3] seems to be obligatory in recent articles, but they appeal
to missing theory behind these methods in to order avoid
direct comparisons.

I’'m happy to report that we actually now know quite a bit
about the classical algorithms for the phase retrieval prob-
lem. I mentioned in the beginning that only a handful of
good first-order algorithms exist. Among these are steep-
est descent (which includes averaged projections, the Mis-
ell algorithm for phase diversity, and many of the schemes
proposed in the past few years), forward-backward prox
schemes (which include projected gradients, hard- and soft-
thresholding, and accelerations), backward-backward prox
schemes (which include alternating projections and hence
Gerchberg-Saxton), and Douglas-Rachford (to which cate-
gory I assign HIO, RAAR, and the difference map). The
standard “old” algorithms for phase retrieval are all based

on projectors that are composed and averaged in some fash-
ion. Implicit in this is a feasibility formulation of the phase
problem, that is, to find some point in the intersection of
the set of points satisfying the constraints implied by the
data measurements and the set of points satisfying qualita-
tive constraints such as support and nonnegativity. This is
an extremely powerful modeling approach since it is easy to
introduce new constraints without changing one’s algorith-
mic approach. It also lays bare the success and failure of
various methods.

When one settles on a feasibility model for a problem,
uniqueness is almost irrelevant. The two important cases
for feasibility are consistent and inconsistent. In the con-
sistent case the sets have at least one point in common; in
the inconsistent case, the sets have no point in common.
Most of the progress on the nonconvex convergence theory for
the good algorithms above has been for the consistent case.
Based on a series of papers exposing the structure of alter-
nating projections in increasingly inhospitable environments
[15, 35, 34, 40, 5, 18, 49, 27], we know now that alternating
projections applied to consistent phase retrieval problems is
locally linearly convergent at points of intersection except
in the unlikely case that the constraints are tangential. The
nonconvex theory of the Douglas-Rachford algorithm for con-
sistent problems is also fairly well understood in settings that
cover phase retrieval [27, 51].

As T argued above, however, the real-world phase retrieval
problem is hopelessly inconsistent. This inconsistency can be
observed by simply running the Douglas-Rachford algorithm
on your favorite experimental data set. You will observe
the iterates moving around seemingly chaotically, sometimes
looking like something well structured before wandering off
to nonsense. This behavior is a consequence of the fact that
the Douglas-Rachford mapping applied to inconsistent feasi-
bility has no fixed points. For convex problems this is not
a serious issue since the shadow sequence of the iterates can
be shown to converge [6]. For nonconvex problems, however,
all bets are off, and this explains the instability of the HIO
algorithm for phase retrieval.

Figure 1: Representative iterate of a noisy JWST test wavefront
recovered with the Douglas-Rachford algorithm. For a movie
showing instability of the algorithm, go to http://num.math.
uni-goettingen.de/proxtoolbox

The RAAR algorithm [38, 39] is a relaxation of the
Douglas-Rachford algorithm that is guaranteed to have fixed
points for a strong enough relaxation. One can easily ver-
ify [29, 40] that the regularity of the RAAR mapping for
feasibility-based phase retrieval satisfies one of two condi-
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tions that together are sufficient to guarantee local linear
convergence developed in [51], namely, that the constraint
sets are superregular. What remains to be shown in order
to guarantee that the RAAR algorithm is locally linearly
convergent for phase retrieval is that the RAAR fixed-point
mapping is metrically reqular[33] (in some appropriate sense)
at fixed points. Abstract formulas for showing metric reg-
ularity exist and rely on computing the coderivative of the
fixed-point operator [16, 46], but executing these calculations
and verifying the conditions for phase retrieval is compli-
cated.

Another way to understand the RAAR algorithm outlined
in [39] is as the Douglas-Rachford algorithm applied not to
the problem of minimizing the sum of two indicator functions
but rather to the problem of minimizing the weighted sum
of the squared distance to one of the sets plus the indicator
of the other set. Loock and Plonka [36, 37] took this idea
further to apply the RAAR algorithm not to the squared
distance to a set but rather to the ¢;-norm of the wavelet
transform of the object to be recovered. They were able to
show that the iterates of the RAAR algorithm in this setting
are at least bounded. I am optimistic that the remaining
open issues concerning the convergence of the RAAR algo-
rithm for phase retrieval will soon be resolved. As pointed
out in [39], the power of Douglas-Rachford and its relax-
ations in the context of feasibility is that it can be tuned
to have far fewer fixed points (i.e., locally optimal points),
than algorithms such as alternating projections or steepest
descents.

For the alternating projections algorithm applied to phase
retrieval, the picture is fairly complete. The results are lo-
cal, as one can expect from any nonconvex problem. For
practical, inconsistent phase retrieval, recent work with Matt
Tam and Thao Nguyen shows that alternating projections
must converge locally linearly to local best approximation
points except in rare degenerate cases [43, Theorem 5.10
and Example 5.16]. This result allows for error bounds as
stopping criteria for this algorithm. What we cannot say
is whether the fixed points of the algorithm are good, and
this has been the main point of criticism. But let us re-
turn to the observation that under conditions similar to, al-
beit stronger than, those used to justify convex relaxations
in sparsity optimization, alternating projections converges
globally linearly to a unique global solution in that setting.
We can then conjecture that alternating projections for phase
retrieval with enough measurements converges globally lin-
early to a globally optimal best approximation point. A nice
opportunity exists here for the two strands of analysis that
have been picking away at the phase retrieval problem—one
from the variational analysis side and the other from spar-
sity optimization—to merge productively. A strength of the
theory sparked by [14, 13] is that it can say something about
how much information is needed before one can reasonably
expect nice things to happen on a global scale, and this has
nothing to do with convexity or the quantitative local anal-
ysis.

The algorithms and phenomena discussed here can be ex-

plored in the ProxToolbox [41], which is a slowly growing
collection of demonstrations of simple first-order methods
built on prox-operators. Following the example of Buckheit
and Donoho [11] and more recent calls for reproducible re-
search [54], we are trying to make available all numerical
demonstrations that have supported our publications. This
effort will expand to data and algorithms from the broader
Nanoscale Photonic Imaging Collaborative Research Center
at Gottingen. Phase Focus Limited of Sheffield, UK, claims
intellectual property rights on iterative routines for ptychog-
raphy and has sued researchers. No academic researcher has
the means to challenge such assertions and this has put a chill
on efforts to disseminate information, but it does not appear
to be an outright barrier. In this age of increased suspicion
of science and the scientific method, it is all the more im-
portant to make our work as transparent and accessible as
possible.
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1 Introduction to constrained low-rank ma-
trix approximations

Constrained low-rank matrix approximation (CLRMA) is
becoming more and more popular because it is able to extract
pertinent information from large data sets; see, for example,
the recent survey [87]. CLRMA is equivalent to linear dimen-
sionality reduction. Given a set of n data points m; € RP
(j =1,2,...,n), the goal is to find a set of r basis vectors
up € RP (k=1,2,...,r) and the corresponding weights vy
so that for all j, m; =~ 22:1 Vkj Ug. This problem is equiv-
alent to the low-rank approximation of matrix M, with

M=[mime ... my] = [ug ug ... ugllvy va ... v, =UV,

where each column of M is a data point, each column of U
is a basis vector, and each column of V provides the coordi-
nates of the corresponding column of M in the basis U. In
other words, each column of M is approximated by a linear
combination of the columns of U.

In practice, when dealing with such models, two key
choices exist:

1. Measure of the error M —UV . Using the standard least-

squares error, |[M —UV||% = > (M- UV)ZZJ-, leads to

principal component analysis (PCA) that can be solved
by using the singular value decomposition (SVD). Sur-
prisingly, one can show that the optimization problem
in variables (U, V) has no spurious local minima (i.e.,
all local minima are global), which explains why it can
be solved efficiently despite the error being nonconvex.
Note that the resulting problem can be reformulated as
a semidefinite program (SDP) by using the Ky Fan 2-k-
Norm [29, Prop. 2.9].
If data is missing or if weights are assigned to the en-
tries of M, the problem can be cast as a weighted low-
rank matrix approximation (WLRA) problem with er-
ror >, Wi (M — UV)?; for some nonnegative weight
matrix W, where W; ; = 0 when the entry (4, j) is miss-
ing [86]. Note that if W contains entries only in {0, 1},
then the problem is also referred to as PCA with missing
data or low-rank matrix completion with noise.
WLRA is widely used for recommender systems [61] that
predict the preferences of users for a given product based
on the product’s attributes and user preferences.
If the sum of the absolute values of the entries of the
error », ;|M — UV|;; is used, we obtain yet another
variant more robust to outliers (sometimes referred to

as robust PCA [15]). It can be used, for example, for
background subtraction in video sequences where the
noise (the moving objects) is assumed to be sparse while
the background has low rank.

2. Constraints that the factors U and V should satisfy.
These constraints depend on the application at hand
and allow for meaningful interpretation of the factors.
For example, k-means' is equivalent to requiring the
factor V to have a single nonzero entry in each col-
umn that is equal to one, so that the columns of U
are cluster centroids. Another widely used variant is
sparse PCA, which requires that the factors (U and/or
V) be sparse [28, 57, 69], thus yielding a more com-
pact and easily interpretable decomposition (e.g., if V'
is sparse, each data point is the linear combination of
only a few basis elements). Imposing componentwise
nonnegativity on both factors U and V leads to non-
negative matrix factorization (NMF). For example, in
document analysis where each column of M corresponds
to a document (a vector of word counts), these nonneg-
ativity constraints allow one to interpret the columns
of the factor U as topics, and the columns of the factor
V indicate in which proportion each document discusses
each topic [64]. In this paper, we focus on this particular
variant of CLRMA.

CLRMA problems are at the heart of many fields of ap-
plied mathematics and computer science, including, statis-
tics and data analysis [56], machine learning and data
mining [30], signal and image processing [1], graph the-
ory [22], numerical linear algebra, and systems theory and
control [72]. The good news for the optimization commu-
nity is that these CLRMA models lead to a wide variety of
theoretical and algorithmic challenges for optimizers: Can
we solve these problems? Under which conditions? What is
the most appropriate model for a given application? Which
algorithm should we use in which situation? What type of
guarantees can we provide?

CLRMA problems can be formulated in the following way:

min _ ||M — UV]. (1)
UeQu,VEQy

As an introduction, below we discuss several aspects of (1).

Complexity. As soon as the norm || - || is not the Frobe-
nius norm or the feasible domain has constraints (i.e.,
Qu # RP*" or Qy # R"™*™), the problem becomes difficult
in most cases. For example, WLRA, robust PCA, NMF,
and sparse PCA are all NP hard [44, 50, 90, 74]. An active
direction of research is developing approximation algorithms
for such problems; see, for example, [26] for the norm
D 1M, 5) = UV ()15 (for p = 2, this is PCA), [79] for
WLRA, and [85] for the componentwise ¢;-norm.

Convexification. Under some conditions on the matrix M,
convexification approaches can lead to optimality guarantees.

Lk-means is the problem of finding a set of centroids uy, such that the
sum of the distances between each data point and the closest centroid
is minimized.
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When there are no constraints (Qy = RP*" Qp = R™*"),
(1) can be equivalently rewritten as

n}}n |[M — X|| such that rank(X) =r.

From X, a solution (U, V) can be obtained by factorizing X
(e.g., using the SVD). The most widely used convex models
are based on minimizing the nuclear norm of X:

min [ M~ X[+ A|X .. )

where A > 0 is a penalty parameter and || X|. =
S 6 (X) = [|o(X)|1, o(X) being the vector of singu-
lar values of X. This problem can be written as a semidefi-
nite program; see [80] and the references therein.

When the matrix M satisfies some conditions depending
on the model (in particular, M has to be close to a low-rank
matrix), the optimal solution to (2) can be guaranteed to
recover the solution of the original problem; examples include
PCA with missing data [80] and robust PCA [19, 15].

As far as we know, these approaches have two drawbacks.
First, if the input matrix M does not satisfy the required
conditions, which is often the case in practice (e.g., for
recommender systems and document classification where
the input matrix is usually not close to a low-rank matrix),
it is unclear whether the quality of the solution to (2) will
be satisfactory. Second, the number of variables is much
larger than in (1), namely, mn vs. r(m + n). For large-scale
problems, even first-order methods might be too costly.
A possible way to handle the large positive semidefinite
matrix is to (re)factor it in the SDP as the product of two
matrices; this is sometimes referred to as the Burer-Monteiro
approach [14]. In fact, in many cases, any stationary point
can be guaranteed to be a global minimum [12, 66]; see also
[65] for a survey. This is currently an active area of research:
trying to identify nonconvex problems for which optimal
solutions can be guaranteed to be computed efficiently (see
the end of the next paragraph for other examples).

Nonconvex approaches. One can tackle (1) in many ways
using standard nonlinear optimization schemes. The most
straightforward and popular way is to use a two-block co-
ordinate descent method (in particular if Qp and Qy are
convex sets since the subproblems in U and V' are convex):
0. Initialize (U, V).
1. U < X, where X solves exactly or approximately
minxcq, |M — XV]|.
2.V « Y, where Y solves exactly or approximately
argminy cq, [|M — UY|.
This simple scheme can be implemented in different ways.
The subproblems are usually not solved up to high preci-
sion; for example, a few steps of a (fast) gradient method
can be used. These methods can in general be guaran-
teed to converge to a stationary point of (1) [16]. More so-
phisticated schemes include Riemannian optimization tech-
niques [11, 89]. Many methods based on randomization have
also been developed recently; see the surveys [71, 91].

Alternating and local minimization were shown to lead to
optimal solutions under assumptions similar to those needed
for convexification-based approaches; see, for example,
[59, 55] for PCA with missing data, [2] for (a variant of)
sparse PCA, and [78] for robust PCA. Recently, [7, 3§]
showed that PCA with missing data has no spurious local
minima (under appropriate conditions).

Outline of the paper. In the rest of this paper, we focus on
a particular CLRMA problem, namely, nonnegative matrix
factorization (NMF), with || - || = || - [|%, Qu = RE"", and
Qv =RY". As opposed to other CLRMA variants (such as
robust PCA, sparse PCA, and PCA with missing data), as
far as we know, no useful convexification approach exists.
The goal of this paper is not to provide an exhaustive
survey but rather to provide a brief introduction, focusing
only on several aspects of NMF (obviously biased toward our
own interests). In particular, we address the application of
NMEF for hyperspectral imaging, the geometric interpretation
of NMF, complexity issues, algorithms, and the nonnegative
rank and its link with extended formulations of polyhedra.

2 Nonnegative Matrix Factorization
The standard NMF problem can be formulated as follows

min |M — UV||% such that U,V >0. (3)
UGRPXT‘7VER7‘><n

As mentioned in the introduction, these nonnegativity con-
straints allow interpreting the basis elements in the same
way as the data (e.g., as image, or vector of word counts)
while the nonnegativity of V' allows interpreting the weights
as activation coefficients. We describe in detail in the next
section a particular application, namely, blind hyperspectral
unmixing, where the nonnegativity of U and V has a physical
interpretation.

The nonnegativity constraints also naturally lead to sparse
factors. In fact, the first-order optimality conditions of a
problem of the type min,>o f(z) are z; > 0, V,;f(z) > 0
and V; f(x)x; = 0 for all i. Hence stationary points of (3)
are expected to have zero entries. This property of NMF en-
hances its interpretability and provides a better compression
compared with unconstrained variants.

We refer to the problem of finding an exact factorization,
that is, finding U > 0 and V' > 0 such that M = UV,
as “exact NMF.” The minimum r such that an exact NMF
exists is the nonnegative rank of M, denoted rank (M). We
have that rank(M) < rank; (M) < min(m,n) (since M =
MI = IM, where I is the identify matrix).

NMF has been used successfully in many applications; see,
for example, [25, 42] and the references therein. In the next
section we focus on one particular application, namely, blind
hyperspectral unmixing.

3 Hyperspectral Imaging

A grayscale image is an image in which the value of each
pixel is a single sample. An RGB image has three chan-
nels (red, green, and blue) and allows a color image to be
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reconstructed as it is perceived by an human eye. A hy-
perspectral image is an image for which usually each pixel
has between 100 and 200 channels, corresponding to the re-
flectance (fraction of light reflected by that pixel) at dif-
ferent wavelengths. The wavelengths measured in a hyper-
spectral image depend on the camera used and are usu-
ally chosen depending on the application at hand. The ad-
vantage of hyperspectral images is that they contain much
more information, some of it blind to the human eye,
that allows one to identify and characterize the materials
present in a scene much more precisely; see Figure 1 for
an illustration. Its numerous applications include agricul-

Figure 1: From top to bottom: (1) RGB image of four plants:
can you identify the artificial one? (2) Grayscale image at a wave-
length that is blind to the naked eye (namely, 770 nm, infrared)
and allows identifying the artificial plant (plants have a high re-
flectance at infrared wavelengths, as opposed to the artificial ma-
terial). (3) Analysis of the image allows finding a small target,
a LEGO figure within the plants. Source: sciencenordic.com,
Photo: Torbjgrn Skauli, FFI.

ture, eye care, food processing, mineralogy, surveillance,
physics, astronomy, chemical imaging, and environmen-
tal science; see, for example, https://en.wikipedia.org/
wiki/Hyperspectral_imaging or http://sciencenordic.
com/lengthy-can-do-list-colour-camera.

Assume a scene is being imaged by a hyperspectral imager
using p wavelengths (that is, p channels) and n pixels. Let us
construct the matrix M € RY*™ such that M (i, j) is the re-
flectance of the jth pixel at the ith wavelength. Each column
of M therefore corresponds to the so-called spectral signature
of a pixel, while each row corresponds to a vectorized image

at a given wavelength. Given such an image, an important
goal in practice is to (1) identify the constitutive materials
present in the image, called endmembers (e.g., grass, trees,
road surfaces, roof tops) and (2) classify the pixels accord-
ingly, that is, identify which pixels contain which materials
and in which quantity. In fact, the resolution of most hy-
perspectral images is low, and hence most pixels will contain
several materials. If a library or dictionary of spectral signa-
tures of materials present in the image is not available, this
problem is referred to as blind hyperspectral unmixing (blind
HU): the goal is to identify the endmembers and quantify the
abundances of the endmembers in each pixel.

The simplest and most popular model is the linear mixing
model (LMM). It assumes that the spectral signature of a
pixel equals the weighted linear combination of the spectral
signatures of the endmembers it contains, where the weight
is given by the abundances. Physically, the reflectance of a
pixel will be proportional to the materials it contains: for
example, if a pixel contains 30% of aluminum and 70% of
copper, its spectral signature will be equal to 0.3 times the
spectral signature of the aluminum plus 0.7 times the spec-
tral signature of the copper. In practice, this model is only
approximate because of imperfect conditions (measurement
noise, light reflecting off several times before being measured,
atmospheric distortion, etc.). We refer the reader to [8, 70]
for recent surveys on (blind) HU techniques and to [84] for
an introduction to hyperspectral imaging.

If we use the LMM and assume that the image contains
r endmembers whose spectral signatures are given by the
columns of the matrix U € R"™", we have for all j

M(:,5) =Y oU( k) = UV(:, ),
k=1

where vp; > 0 is the abundance of the kth endmember in
the jth pixel. Therefore, blind HU boils down to the NMF
of matrix M; see Figure 2 for an illustration.

UG1) UG2) UGL3)

V(D)
.1

Figure 2: Illustration of the decomposition of a hyperspectral
image with three endmembers [70]. On the left, the hyperspec-
tral image M; in the middle, the spectral signatures of the three
endmembers as the columns of matrix U; on the right, the abun-
dances of each material in each pixel (referred to as the abundance
maps).

Using a standard NMF algorithm, that is, an algorithm
that tries to solve (3), will in general not lead to the
sought decomposition. The reason is that the solution of
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NMF is highly nonunique, as discussed later. In practice, a
meaningful solution is achieved usually by using additional
constraints/penalty terms, including: the sum-to-one con-
straints on the abundances (3, _, vi; = 1Vj), sparsity of V/
(because most pixels contain only a few endmembers), piece-
wise smoothness of the columns of U (since they correspond
to spectral signatures), and spatial coherence of the rows of
V' (because neighboring pixels are more likely to contain the
same endmembers). Numerous constrained variants of NMF
exist that we do not discuss here; see, for example, [25, 42]
and the references therein.

4 Geometry and Uniqueness

NMF has a nice geometric interpretation, which is crucial
to consider in order to understand the nonuniqueness of the
solutions. As discussed subsequently, it also allows one to
develop efficient algorithms and is closely related to the ex-
tended formulations of polyhedra.

Let us consider the exact case, that is, M = UV. Without
loss of generality, (i) the zero columns of M and U can be
removed, and (ii) the columns of M and U can be normalized
so that the entries of each column sum to one:

MD,}! =UDy'DyV Dy},

where Dy; and Dy are diagonal matrices with Dps(j,5) =
1M, 5)|l1 and Dy (4,7) = [|U(:, 4)|l1, respectively. Since we
have M(:,5) =Y ;_, U(:,k)V(k,j) = UV (s, j), this normal-
ization implies that the columns of V' also have their entries
summing to one, that is, ||V (:,j)||1 = 1 for all j. Thus that,
after normalization, the columns of M belong to the convex
hull of the columns of U:

M(:,j) € conv(U) C AP ={x e RP|x >0, |||, =1} Vy,

where conv(U) = {Uz|xz > 0,||z||s = 1}. Therefore, the
exact NMF problem is equivalent to finding a polytope,
conv(U), nested between two given polytopes, conv(M) and
the unit simplex AP. The dimension of the inner polytope,
conv(M), is rank(M) — 1, while the dimension of the outer
polytope, AP, is p— 1. The dimension of the nested polytope
conv(U) is not known in advance. When the three poly-
topes (inner, nested, and outer) have the same dimension,
this problem is well known in computational geometry and
is referred to as the nested polytope problem (NPP) [27].

If rank(M) = rank(U), the column spaces of M and U
must coincide, and the outer polytope can be restricted to
AP N col(M), in which case the inner, nested, and outer
polytopes have the same dimension. If we impose explic-
itly this additional constraint (rank(M) = rank(U)) on the
exact NMF problem, we can prove that NPP and this re-
stricted variant of exact NMF are equivalent, that is, they
can be reduced to one another [46, 20].

To illustrate, we present a simple example with nested
hexagons; this is similar to the example presented in [76].

Let a > 1, and let M, be the matrix

1 a 2a —1 2a-—1 a 1
1 1 a 20 —1 2a-—1 a
1 a 1 1 a 2¢ —1 2a-1
al|l 2a-1 a 1 1 a 2a — 1
20 —1 2a-—1 a 1 1 a
a 20—1 2a-—1 a 1 1

(4)
The restricted exact NMF problem for M, involves two
nested hexagons (recall that we restrict the polytopes to be
in the intersection between the column space of M, and AP,
which has dimension 2 since rank(M,) = 3). Each facet of
the outer polytope corresponds to a facet of the nonnegative
orthant, that is, to a nonnegativity constraint. The inner
hexagon is smaller than the outer one with a ratio of %

For a = 2, the inner hexagon is twice as small as the
outer one, and we can fit a triangle between the two so
that rank(M,) = 3; see Figure 3 (top). For any a > 2,
rank (M,) > 4 because no triangle can fit between the two
hexagons. For a = 3, the inner hexagon is 2/3 smaller than
the outer one, and we can fit a rectangle between the two
and rank; (M,) = 4; see Figure 3 (bottom). This implies
that rank (M,) =4 for all 2 < a < 3.

For any a > 3, rank, (M,) = 5. Surprisingly, the non-
negative rank of M, is always no more than 5 (even when a
tends to infinity, in which case the inner and outer hexagons
coincide) because there exists a three-dimensional polytope
within AS with 5 vertices that contains the outer polytope;
see Figure 4, which corresponds to the factorization

012 2 1 0
001 2 2 1
. 1001 2 2
M= dimesiecMa=1 o 1 o (o 1 2
2210 0 1
1 22100
= UV (5)
L o010 000110
2.0 0 0 1
1 10000
1 010 0
= 10001 2|,
0110 0
012 10 0
02 001 00100 1
0101 0

where rank(U) = 4, and hence conv(U) has dimension 3.

This example illustrates other interesting properties of

NMEF:

e NMF does not in general have a unique solution (up to
scaling and permutation of the rank-one factors). For
example, for a = 2 (Figure 3, top), four triangles can
be fit between the two polytopes (the one shown on
the figure, its rotation by 60 degrees, and two trian-
gles whose vertices are three nonadjacent vertices of the
outer hexagon). For 1 < a < 2, this would be even
worse since there would be an infinite number of solu-
tions. For this reason, practitioners often add additional
constraints to the NMF model to try to identify the most
meaningful solution to their problem (such as sparsity,
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-+-conv(U)

——AP A col(M,)

_e_conv(Ma)
-+-conv(U)

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 3: NPP problem corresponding to the exact NMF of the
matrix from (4), restricted to the column space of M: (top) the
case a = 2; (bottom) a = 3.

- —*;7——77,_,77_777 —'—EEEDXI(MUI}V A%
- ’4’}/ corv(U) mcol(U) n A°

-o- col(U)m A8

Figure 4: NPP solution corresponding to the exact NMF of
the matrix from (5), restricted to the column space of U. It
corresponds to the matrix M, from (4) when a — oco.

as discussed earlier); see, for example, [63, 40, 54] for
more details on the uniqueness of NMF.

e The nonnegative rank can increase only in the neighbor-
hood of a given matrix; that is, the nonnegative rank is
upper semicontinuous [10, Th.3.1]:

If P is a nonnegative matrix, without zero
columns and with rank(P) = r, then there
exists a ball B(P,¢€) centered at P and of ra-

dius € > 0 such that rank, (N) > r for all
N € B(P,e).

5 Complexity

Given a nonnegative matrix M, checking whether
rank(M) = ranky (M) = r is NP hard: unless P = NP,
there is no polynomial time algorithm in m, n and r for this
problem [90]. If r is fixed, however, there is a polynomial
time algorithm running in O((pn)TQ) [5, 75]. The argument
is based on quantifier elimination theory (in particular the
fact that checking whether a system of ¢ equations in n vari-
ables up to degree d can be solved in time polynomial in ¢
and d). Unfortunately, as far as we know, this cannot be used
in practice, even for small matrices (e.g., checking whether a
4-by-4 matrix has nonnegative rank 3 seems already imprac-
tical with current solvers). Developing an effective code for
exact NMF for small matrices is an important direction for
further research. Note that we have developed a code based
on heuristics that allows solving exact NMF for matrices up
to a few dozen rows and columns (although our code comes
with no guarantee) [88].

More recently, Shitov [83] and independently Chistikov et
al. [21] answered an important open problem showing that
the nonnegative rank over the reals might be different from
the nonnegative rank over the rationals, implying that the
nonnegative rank computation is not in NP since the size of
the output is not bounded by the size of the input.

6 Algorithms

In this section, we briefly describe the two main classes of
NMF algorithms. As mentioned in the introduction, there
does not exist, to the best of our knowledge, a successful
convexification approach for NMF, as opposed to other low-
rank models. Note, however, that there does exist a con-
vexification approach to compute lower bounds for the non-
negative rank [35]. An explanation is that we cannot work
directly with the low-rank approximation X = UV and use
the nuclear norm of X, because even if we were given the
best nonnegative approximation X of nonnegative rank r for
M, in general recovering the exact NMF (U, V) of X would
be difficult. Writing directly a convexification in variables
(U,V) seems difficult (for rank higher than one?) because
of the symmetry of the problem (permuting columns of U
and rows of V accordingly provides an equivalent solution).
Breaking this symmetry seems nontrivial; see [39, pp. 146-
148] for a discussion and a tentative SDP formulation. This
is an interesting direction for further research.

6.1 Standard nonlinear optimization schemes

As for CLRMA problems, most NMF algorithms use a two-
block coordinate descent scheme:
0. Initialize (U,V) > 0.

2Note that the rank-one NMF problem is equivalent to the rank-
one unconstrained problem since for any rank-one solution uv”, one
can easily check that |u||v|T is a solution with lower objective function
value. This also follows from the Perron-Frobenius and Eckart-Young

theorems.
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1. U + X, where X solves exactly or approximately
minxzo HM - XV”F .
2.V « Y, where Y solves exactly or approximately
argminy~g [|[M - UY||F .
Note that the subproblems to be solved are so-called non-
negative least squares (NNLS). Because NMF is NP hard,
these algorithms can only guarantee convergence (usually to
a first-order stationary point).
The most well-known algorithm for NMF is the multiplica-
tive updates, namely,
[MVT]
U Ue grppay

[UTM]
V«Vo 7[UTUV]’

where o (resp. %) is the componentwise product (resp. divi-
sion) between two matrices. It is extremely popular because
of its simplicity and because it was proposed in the paper
of Lee and Seung [64] that launched the research on NMF.
However, it converges slowly; it cannot modify zero entries;
and it is not guaranteed to converge to a stationary point.
Note that it can be interpreted as a rescaled gradient descent;
see, for example, [42].

Methods that try to solve the subproblems exactly are
referred to as alternating nonnegative least squares; among
these, active set methods seem to be the most efficient, and
dedicated codes have been implemented by Haesun Park and
collaborators; see [60] and the references therein.

In practice, a method that seems to work extremely well
is to apply a few steps of coordinate descent on the NNLS
subproblems: the subblocks are the columns of U and the
rows of V' [24, 45]—the reason is that the subproblems can
be solved in closed form. In fact, the optimal kth column of
U (all other variables being fixed) is given by

arg min Ry —U(:, k)V(k, )||I% = max (0

RiV (k, )T
U(:,k)>0 ’

" IV(E, )3

for Ry, = M—Zﬁék U(:,7)V(4,:), and similarly by symmetry
for the kth row of V.

Many other approaches can be applied to the NNLS
subproblems (e.g., projected gradient method [67],
fast/accelerated gradient method (Nesterov’s method) [53],
and Newton-like method [23]).

6.2 Separable NMF

Although they usually provide satisfactory results in prac-
tice, the methods described in the preceding section do not
come with any guarantee. In their paper on the complexity
of NMF, Arora et al. [5] also identify a subclass of matrices
for which the NMF problem is much easier. These are the
so-called separable matrices defined as follows.

Definition 1. A matriz M is separable if there exists a sub-
set K of r of its columns with r = rank, (M) and a nonneg-
ative matriz V' such that M = M(:, K)V.

This requires each column of the basis matrix U in an
NMF decomposition to be present in the input matrix M.

Equivalently, this requires the matrix V in an NMF decom-
position to contain the identity matrix as a submatrix. The
separable NMF problem is the problem to identify the sub-
set K (in the noisy case, this subset should be such that
miny ¢ | M — M(:, K)V| is minimized).

Although this condition is strong, it makes sense in several
applications, for example the following.

e Document classification: for each topic, there is a “pure”

word used only by that topic (an “anchor” word) [4].

e Time-resolved Raman spectra analysis: each substance
has a peak in its spectrum while the other spectra are
(close to) zero [68].

e Blind hyperspectral unmixing: for each endmember,
there exists a pixel that contains only that endmem-
ber. This is the so-called pure-pixel assumption that
has been used since the 1990s in that community.

Other applications include video summarization [31] and
foreground-background separation [62].

Geometrically, in the exact case and after normalization
of the columns of X and U, the separability assumption is
equivalent to having conv(U) = conv(M). Therefore, the so-
called separable NMF problem reduces to identify the ver-
tices of the convex hull of the columns of M. This is a rela-
tively easy geometric problem. It becomes tricky when noise
is added to the separable matrix, and many recent works
have tried to quantify the level of noise that one can tolerate
and still be able to recover the vertices, up to some error.

Geometric algorithms

Most algorithms for separable NMF are based on the geo-
metric interpretation, many being developed within the blind
HU community (sometimes referred to as pure-pixel search
algorithms). Only recently, however, has robustness to noise
of these algorithms been analyzed.

One of the simplest algorithm, often referred to as the suc-
cessive projection algorithm, is closely related to the modi-
fied Gram-Schmidt algorithm with column pivoting and has
been discovered several times [3, 81, 18]; see the discussion
in [70]. Over a polytope, a strongly convex function (such
as the ¢ norm) is always maximized at a vertex: this can
be used to identify a vertex, that is, a column of U (recall
that we assume that the columns of M are normalized so
that conv(U) = conv(M) under the separability assump-
tion). Once a column of U has been identified, one can
project all columns of M onto the orthogonal complement
of that column (so that this particular column projects onto
0): this amounts to applying a linear transformation to the
polytope. If U is full rank (meaning the polytope is a sim-
plex, which is the case usually in practice), then the other
vertices do not project onto 0, and one can use these two
steps recursively. This approach is a greedy method to iden-
tify a subset of the columns with maximum volume [17, 18].
This algorithm was proved to be robust to noise [49] and can
be made more robust to noise by using strategies such as

e applying dimensionality reduction, such as PCA, to the

columns of M in order to filter the noise [77];
e using a preconditioning based on minimum-volume el-
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lipsoid [43, 73];

e going over the identified vertices (once r vertices have
been identified) to check whether they still maximize
the strongly convex function once projected onto the
orthogonal complement of the other vertices (otherwise,
they are replaced, increasing the volume of the identified
vertices) [4]; and

e taking into account the nonnegativity constraints in the
projection step [41].

We refer the reader to [8, 70] for surveys on these ap-
proaches. Most geometric approaches for separable NMF are
computationally cheap. Usually, however, they are sensitive
to outliers.

Convex models

If M is separable, there exist an index set IC of size r and
a nonnegative matrix V' such that M = M(:,K)V. Equiva-
lently, there exists an n-by-n nonnegative matrix X with r
nonzero rows such that M = M X with X (K,:) = V. Solving
separable NMF can therefore be formulated as

min || X |lrow,0  such that M = M X,

X>0
where || X ||row,0 counts the number of nonzero rows of X.
A standard convexification approach is to use the ¢; norm,
replacing || X|row,0 with D1, | X (4,:)||x for some k; for ex-
ample, [31] uses k = oo and [32] uses k = 2.

If the columns of M are normalized, the entries of V are
bounded above by one (since the columns of U are vertices),
and another formulation for separable NMF is obtained:

miny>o | diag(X)|lo
such that M = MX and X(i,7) < X(4,4) <1 Vi,j.

Because on each row the diagonal entry has to be the largest
and because the goal is to minimize the number of nonzero
entries of the diagonal of X, the optimal solution will contain
r nonzero diagonal entries and hence r nonzero rows. (Note
that requiring the diagonal entries of X to be binary would
allow one to model this problem exactly by using mixed-
integer linear programming.) Using the ¢; norm, we get an-
other convex model (proposed in [9] and improved in [47]):

minys>g trace(X)
such that M = MX and X (i,5) < X(4,4) <1 Vi, j,

where trace(X) is equal to || diag(X)]||; since X is nonneg-
ative. In practice, when noise is present, the equality term
M = MX is replaced with | M — M X]|| < ¢ for some appro-
priate norm (typically the ¢1, ¢5, or Frobenius norm) or is
added in the objective function as a penalty.

The two models presented above turn out to be essentially
equivalent [48]. The main drawback is the computational
cost, since these models have n? variables. For example, in
hyperspectral imaging, n is the number of pixels and is typ-
ically on the order of millions; hence, solving these problems
is challenging (if not impractical). A natural approach is
therefore to first select a subset of good candidates among
the columns of M (e.g., using geometric algorithms) and then

optimize only over this subset of the rows of X [32, 48]. The
main advantage of this approach is that the resulting models
are provably the most robust for separable NMF [47]. In-
tuitively, the reason is not only that the model focuses in
identifying, for example, a subset of columns with large vol-
ume but also that it requires all the data points to be well
approximated with the selected vertices (since ||M — MX||
should be small). For this reason, they are also much less
sensitive to outliers than are most geometric approaches.

7 Nonnegative Rank and Extended Formu-
lations

We now describe the link between extended formulations of
polyhedra and NMF'. This is closely related to the geometric
interpretation of NMF described earlier.

Let P be a polytope

P={xecR"|b —A(i,:)x >0 for 1 <i<p},

and let (wq, -+, wy,) be its vertices. Let Sp be the p-by-n

slack matrix of P defined as follows:
S’p(i,j):bi—A(i,Z)w]‘ 1§i§p,1§j§n.

An extended formulation of P is a higher-dimensional poly-

hedron @ C R¥*P that (linearly) projects onto P. The min-

imum number of facets (that is, inequalities) of such a poly-

tope is called the extension complexity, xp(P), of P.

Theorem 1. (Yannakakis, [92]). Let Sp be the slack matriz
of the polytope P. Then, rank, (Sp) = zp(P).

Let us just show that xp(P) < rank,(Sp), because it is
elegant and straightforward. Given P = {z € R¥ | b —
Az > 0}, any exact NMF of Sp = UV with U > 0 and
V' > 0 provides an explicit extended formulation (with some
redundant equalities) of P:

Q={(z,y) | b— Az =Uy and y > 0}.

In fact, let us show that Q, = {z|Jy s.t. (z,y) € Q} = P.
We have Q, C P since U > 0 and y > 0; hence
b— Az = Uy > 0 for all (x,y) € Q. We have P C Q,
because all vertices of P belong to @,: by construction,
(w;, V(:,75)) € Q since Sp(:,j) = b— Aw; = UV(:,j) and
V(,j)>0.

Example. The extension complexity of the regular n-
polygons is O(logy(n)) [37]. This result can be used to
approximate a second-order cone program with a linear
program [6]. In particular, we have seen that the extension
complexity of the regular hexagon is 5; see Equation (5) and
Figure 4.

Recent results. Several recent important results for under-
standing the limits of linear programming for solving combi-
natorial problems are based on Theorem 1 and on construct-
ing lower bounds for the nonnegative rank, usually based on
the sparsity pattern of the slack matrix [36]; see [58] for a



14

SIAG/OPT VIEws AND NEWS

survey. In particular, Rothvof3 showed recently that the pre-
fect matching problem cannot be written with polynomially
many constraints [82].
These ideas can be generalized in two ways:
e To characterize the size of approximate extended formu-
lations (for a given precision) [13].
e To any convex cone [51], which leads to other CLRMA
problems. For example, for the cone of positive semidefi-
nite (PSD) matrices, the rows of U and the columns of V
are required to be vectorized PSD matrices. The small-
est PSD extension of a given set (e.g., a polyhedron) is
equal to the so-called PSD rank of its slack matrix; see
the recent survey [34]. (Note that for non-polyhedral
sets, the slack matrix is infinite since the number of ex-
treme points and facets is not finite.)
These ideas, for example, recently allowed Hamza Fawzi to
prove that the PSD cone cannot be represented using the
second-order cone [33]; the proof relies on the fact that the
second-order cone rank of the cone of 3-by-3 PSD matrices
is infinite.

8 Conclusion

In this paper, we have introduced the NMF problem and dis-
cussed several of its aspects. The opportunity for meaningful
interpretations is the main reason why NMF became so pop-
ular and has been used in many applications. NMF is tightly
connected with difficult geometric problems; hence develop-
ing fast and reliable algorithms is a challenge. Although
important challenges remain to be tackled (e.g., developing
exact algorithms for small-scale problems), even more chal-
lenges exist in generalizations of NMF'. In particular, we men-
tioned cone factorizations (such as the PSD factorization and
its symmetric variant [52]), which are more recent problems
and have not been explored to their full extent.
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1 Book Announcements
1.1 MATLAB Guide, Third Edition

By Desmond J. Higham and Nicholas
J. Higham

Publisher: SIAM

ISBN: 978-1-611974-65-2, xxvi + 476 pages
Published: December 2016

http: //bookstore. stam. org/0T150/

ABOUT THE BOOK: MATLAB is an interactive system for
numerical computation that is widely used for teaching and
research in industry and academia. It provides a modern pro-
gramming language and problem solving environment, with
powerful data structures, customizable graphics, and easy-
to-use editing and debugging tools.

1.2 Data Assimilation: Methods, Algorithms,
and Applications

By Mark Asch, Marc Bocquet, and
Maélle Nodet

Publisher: SIAM

Series: Fundamentals of Algorithms, Vol. 11
ISBN: 978-1-611974-53-9, xviii + 306 pages
Published: December 2016

http: //bookstore. stam. orq/FA11/

ABOUT THE BOOK: Data assimilation is an approach that
combines observations and model output, with the objective
of improving the latter. This book places data assimilation
into the broader context of inverse problems and the theory,
methods, and algorithms that are used for their solution.
It provides a framework for, and insight into, the inverse
problem nature of data assimilation, emphasizing “why” and
not just “how.” Methods and diagnostics are emphasized,
enabling readers to readily apply them to their own field of
study.

Chair’s Column

This will be my final column as your Chair and I wanted
to recap some of our recent accomplishments. SIAG/OPT
continues to be the third largest STAG within SIAM with
1172 members as of last year. I was happy to see our student
numbers rebound from 2014 and we have added 189 new
student members who now account for approximately 49%
of our membership.

In the last column we talked about the upcoming elections
and I’'m happy to report who our new officers will be. Tamés
Terlaky was elected as the new Chair and Andreas Waechter
will be joining him as the new Vice Chair. Michael Friedlan-
der will return as the Program Director for the SIAG. Finally,
James Luedtke was elected as the SIAG Secretary/Treasurer.
I want to congratulate all four on their election and I hope
they will find their positions as rewarding as I have. I also
wanted to thank everybody who agreed to run for office, all
of whom deserve our deep gratitude.

Planning continues for our triennial conference, which will
be held in Vancouver, British Columbia on May 22-25, 2017.
From the looks of it, it is shaping up to be one of the biggest
and best conferences ever. We had 130 minisymposia sub-
mitted, which is 12 more than in OP14 and in total we will
have over 156 sessions total. We are in the final stages of
scheduling the program and by the time you read this col-
umn, it will hopefully be out. I’'m really looking forward to
being there.

As a quick reminder, the conference will feature two mini-
tutorials, both of which I encourage you to check out. The
first is on Stochastic Optimization for Machine Learning, or-
ganized by Francis Bach and Mark Schmidt. The second will
be on Optimal Power Flow and is being organized by Alper
Atamturk and Daniel Bienstock.

Finally, I would like to add my sincerest thanks to the en-
tire STAG/OPT membership for allowing me the great privi-
lege of serving as your Chair. It has been an incredible three
years and I have enjoyed every minute of it.

See you in Vancouver!

Juan Meza, SIAG/OPT Chair

School of Natural Sciences, University of California,
Merced, Merced, CA 95343, USA, jcmeza@ucmerced.edu,
http://bit.ly/IG8HUxO
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