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Mixed-integer nonlinear programming (MINLP) is
a vast class of optimization problems with a broad

range of applications. In its most general form, a
MINLP problem can be formulated as

MINLP : min g0(x)
s.t. gi(x) ≤ 0 ∀i = 1, 2 . . . ,m

x ∈ Zp × Rn−p,
where gi : Rn → R is, in general, a nonlinear func-
tion for all i = 0, 1, . . . ,m and may be nonconvex.
MINLP problems subsume two major difficulties of
optimization problems, namely nonlinear gi’s and in-
tegrality of a set of variables. Some well-known sub-
classes of MINLP are NP-hard: relaxing integrality
on x yields a nonconvex (in general) nonlinear opti-
mization problem, while assuming that both the ob-
jective function g0(x) and all constraints gi(x) ≤ 0
are convex yields the subclass of convex MINLP.

Global optima of MINLP problems can be com-
puted by implicit enumeration schemes such as
branch-and-bound [9], which relies on lower bounds
obtained from a relaxation of the problem. Be-
cause a large lower bound can reduce the solution
time, it is crucial to find a tight relaxation. Several
MINLP solvers use Linear Programming (LP) re-
laxations computed by reformulating a MINLP into
an equivalent problem with constraints of the form
xk = fk(x1, x2 . . . , xk−1), where fk is a nonlinear
function, and replacing each such constraint with a
system of linear inequalities Akx ≤ bk [3, 18,20].
Multilinear functions are an important class used

in MINLP models. They are n-variate functions
that are linear in each variable xi, i.e., when the
remaining n − 1 variables are fixed. Among multi-
linear functions, the linear combination of products∑k

i=1 ai
∏
j∈Si

xj , where Si ⊆ {1, 2 . . . , n}, is widely
used in modeling practical MINLPs. Several prac-
tical applications arise in the bilinear case, where
functions

∑n
i=1

∑n
j=1 aijxixj are used: for instance,

pooling and scheduling problems in Chemical Engi-
neering [14,17] and bidimensional bin packing [6].
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This paper focuses on polyhedral relaxations of
monomials, i.e., products of a set of variables: we
aim to find valid linear inequalities for

Mn = {x ∈ Rn+1 : xn+1 =
∏n
i=1 xi, x ∈ [`, u]},

where `, u ∈ Rn+1. We assume 0 ≤ `i < ui < +∞
for i = 1, 2 . . . , n+1. Mn is bounded and nonconvex
as the function ξ(x) =

∏n
i=1 xi is nonconvex.

Define N = {1, 2 . . . , n}. The assumption ` ≥ 0
implies that trivial bounds on xn+1 are ¯̀

n+1 =∏
i∈N `i and ūn+1 =

∏
i∈N ui. In general, ¯̀

n+1 ≤
`n+1 < un+1 ≤ ūn+1; in the remainder, we denote
as M?

n the special case of Mn where `n+1 = ¯̀
n+1

and un+1 = ūn+1. We are interested in developing
a convex set enclosing Mn, defined by a system of
linear inequalities. This would also allow us to ap-
proximate rational terms:

Q2 = {x ∈ R3 : x1 = x3
x2
, x ∈ [`, u]},

and, in general, quotients with products as denomi-
nator: Qn = {x ∈ Rn+1 : x1 = xn+1∏n

k=2 xk
, x ∈ [`, u]}.

1. Linear Inequalities for M2

The following linear relaxation of M?
2 was introduced

by McCormick [12] and shown to be its tightest con-
vex relaxation by Al-Khayyal and Falk [1]:

x3 ≥ `2x1 + `1x2 − `1`2
x3 ≥ u2x1 + u1x2 − u1u2

x3 ≤ `2x1 + u1x2 − `1u2
x3 ≤ u2x1 + `1x2 − u1`2.

(1)

M?
2 and its convex hull are depicted in Figure 1.

As regards M2, Tawarmalani et al. [19] describe
the convex hull of {x ∈ R3 : x1x2 + x3 ≥ c, `i ≤
xi ≤ ui, i = 1, 2, 3}. This is a special case of M2, as
x1x2 +x3 ≥ c implies a lower bound `3 on x1x2 that
is larger than ¯̀

3 = `1`2 if `1`2+u3 < c. Tawarmalani
and Sahinidis [20] describe the convex hull of

D3 = {x ∈ R3 : x1 = x3
x2
,

0 < `2 ≤ x2 ≤ u2, 0 ≤ `3 ≤ x3 ≤ u3},

again a special case of M2 where `1 = `3
u2

, u1 = u3
`2

.
The set D3 is also studied by Jach et al. [8], who
generalize the approach of [20] to find the convex hull

x3

x2

x1

Figure 1: M?
2 and its convex hull (1).
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Figure 2: Projection of M2 onto (x1, x2).

of (n−1)-convex functions, i.e., nonconvex functions
that are convex when any of their variables is fixed.

In order to find valid inequalities for the more
general M2, consider its projection onto (x1, x2):
P2 = {(x1, x2) ∈ R2 : `i ≤ xi ≤ ui, i = 1, 2, `3 ≤
x1x2 ≤ u3} (see Figure 2). It is safe to assume
here that `3 ≤ `1u2 and `3 ≤ u1`2, as otherwise
a tighter valid lower bound for x1 (resp. x2) would
be `3/u2 > `1 (resp. `3/u1 > `2), or equivalently, the
upper left (resp. lower right) corner of the bounding
box would be cut out by x1x2 ≥ `3. Similarly, we
assume that u3 ≥ `1u2 and u3 ≥ u1`2.

Before describing a valid linear inequality for M2,
it is worth to briefly mention the particular case
where `1 = `2 = 0 and u1 = u2 = +∞. In that case,
the convex hull is easily proved to be the intersection
of {x ∈ R3 : `3 ≤ x3 ≤ u3} with the second order
cone {x ∈ R3 : (x3 +

√
`3u3)

2 ≤ (
√
`3 +

√
u3)

2x1x2}.
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Lifted Tangent Inequalities. We provide a more
detailed derivation of the results below in [4]. Con-
sider a point x? ∈ [`1, u1]× [`2, u2] such that x?1x

?
2 =

`3, therefore `1 ≤ x?1 ≤ min{u1, `3/`2} and `2 ≤
x?2 = `3/x

?
1 ≤ min{u2, `3/`1}. The tangent to the

curve x1x2 = `3 at x? gives a linear inequality
a1(x1−x?1)+a2(x2−x?2) ≥ 0 that is valid for P2 (see
Figure 2). The coefficients a1 and a2 are given by
the gradient of the function ξ(x) = x1x2 at x?, i.e.,
a1 = ∂ξ

∂x1
(x?) = x?2 and a2 = ∂ξ

∂x2
(x?) = x?1. Hence

the inequality, which we call tangent inequality, is

x?2(x1 − x?1) + x?1(x2 − x?2) ≥ 0. (2)

As this inequality is valid within P2 and is indepen-
dent from x3, it is also valid for M2.

Figure 3: A representation of M2.

Consider now M2 (depicted in Figure 3) rather
than its projection. To give a hint as to why Mc-
Cormick inequalities (1) are not sufficient in this
case, consider the set Y obtained by intersecting
M2 with the set {x ∈ R3 : x1 = x2}, and suppose
`1 = `2 = 0 and u1 = u2 = 10. Then Y can be rep-
resented as {(λ, y) ∈ R2 : y = λ2}. The McCormick
inequalities imply y ≤ 100λ, which yields the convex
relaxation given by the shaded area (both light and
dark) in Figure 4, clearly not the tightest relaxation
given that (2) tightens it. Furthermore, lifting (2)
would restrict the relaxation to the darker area in
Figure 4. We lift (2) as follows: the inequality

x?2(x1 − x?1) + x?1(x2 − x?2) + b(x3 − `3) ≥ 0 (3)

is clearly valid for x3 = `3. Validity for M2 requires

g(b) = min{x?2(x1 − x?1) + x?1(x2 − x?2) + b(x3 − `3) :
(x1, x2, x3) ∈M2} ≥ 0.

x3 = x1x2 = λ2

u3

`3 λ

Figure 4: The relaxation of M2 intersected with {x ∈
R3 : x1 = x2} using McCormick inequalities only
(the light shaded area) and with the lifted inequality
(the dark shaded area).

Clearly, g(b) = 0 if b ≥ 0 (a global optimum is given
by (x?1, x

?
2)), hence we aim at finding the minimum

b < 0 such that (3) is valid.
Observe that validity of (3) requires that it be

satisfied by all points of UC2 = {x ∈ [`, u] : x3 =
x1x2 = u3}. If we relax the bounds u1 and u2
on x1 and x2, the line T = {x ∈ R3 : x3 =
u3, x

?
2(x1 − x?1) + x?1(x2 − x?2) + b(u3 − `3) = 0} in-

tersects UC2 in either (i) none, (ii) one, or (iii) two
points. The first two cases imply validity of the in-
equality, unlike the third one.

Consider case (ii) and denote x̄ = (x̄1, x̄2) the only
intersection; T is then tangent to UC2 at x̄. Thus,
the gradient of ξ at x̄ must be parallel to∇ξ(x?), i.e.,
∇ξ(x̄) = α∇ξ(x?) for some α > 0, hence (x̄2, x̄1) =
(αx?2, αx

?
1) and x̄1x̄2 = u3 = α2x?1x

?
2 = α2`3, there-

fore α =
√

u3
`3
. Since (x̄1, x̄2) satisfies (3) at equality,

x?2(x̄1 − x?1) + x?1(x̄2 − x?2) + b(u3 − `3) =
x?2(αx

?
1 − x?1) + x?1(αx

?
2 − x?2) + b(u3 − `3) = 0,

and as a result b =
2
(
1−
√

u3
`3

)
`3

u3−`3 .
The procedure outlined above does not work in

general as x̄ = αx? may exceed one of the upper
bounds on x1 or x2. To this purpose, consider the
parametric vector x̂(t) with x̂i(t) = min{ui, tx?i }.
The set Γ(x?) = {x ∈ R2 : xi = min{ui, tx?i }, i =
1, 2, t ≥ 1}, depicted in Figure 5 for two distinct
vectors x?, is a piecewise linear set. The function
ξ(t) = x̂1(t)x̂2(t) is monotonically non-decreasing
and piecewise convex, and hence there exists a t̂
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Figure 5: Construction of Γ(x?), t̂, and x̂. The set
Γ(x?) is represented by the dashed line.

such that ξ(t̂) = u3. In order to compute t̂, assume
w.l.o.g. that u1

x?1
≤ u2

x?2
. Then

ξ(t) =


x?1x

?
2t

2 = `3t
2 if 1 ≤ t ≤ u1

x?1
u1x

?
2t if u1

x?1
≤ t ≤ u2

x?2
u1u2 if t ≥ u2

x?2
,

and t̂ = ξ−1(u3) is computed as follows: if

x?1x
?
2

(
u1
x?1

)2
=

u21x
?
2

x?1
≥ u3, then t̂ =

√
u3
`3

; otherwise, if

u1x
?
2
u2
x?2

= u1u2 ≥ u3, t̂ = u3
u1x?1

. Note that these two

cases exhaust all values of t as we assume u1u2 ≥ u3.
Denote x̂ = x̂(t̂). Clearly x̂ = (x̂1, x̂2, u3) ∈ M2,

and it satisfies (3) at equality if

b = b̄ := −x
?
2(x̂1 − x?1) + x?1(x̂2 − x?2)

u3 − `3
,

which yields a valid inequality (3) for M2 that we call
lifted tangent inequality (LTI) – note that it only de-
pends on x?. The generalization to Mn is given in
Section 3. LTIs are easily proven to be disjunctive
cuts obtained from intersecting M2 with the disjunc-
tion x3 = `3 ∨ x3 = u3.

2. Linear Inequalities for M ?
n

The convex hull of sets defined by products of
more than two terms has attracted interest for some
decades. Meyer and Floudas [13] provide a set of lin-
ear inequalities describing the convex hull of a more
general case of M?

3 , where lower and upper bounds
can also be negative.

Ryoo and Sahinidis [16] construct polyhedral re-
laxations of M?

n with n > 2 as follows: given an
index set I = {i1, i2 . . . ...iK} and the product of
K > 2 variables

∏
i∈I xi, add auxiliary variables

y2, y3 . . . , yK defined as

y2 = xi1xi2
y3 = y2xi3
y4 = y3xi4

...
yK = yK−1xiK ,

where the bounds on yk are determined by the
bounds on the factors of the product. Then, add

McCormick inequalities for M
(2)
2 = {(xi1 , xi2 , y2) ∈

[`i1 , ui1 ] × [`i2 , ui2 ] × [`(y2), u(y2)] : y2 = xi1xi2}
and for each set M

(k)
2 = {(yk−1, xik , yk) ∈

[`(yk−1), u(yk−1)] × [`ik , uik ] × [`(yk), u(yk)] : yk =
yk−1xik}, with 3 ≤ k ≤ K. We define `(yk) :=
`(yk−1)`ik , with `(y2) = `i1`i2 , and analogously de-
fine the upper bounds u(yk).

A convex estimator can thus be obtained with
4(n − 1) linear inequalities. This procedure, called
Recursive Arithmetic Intervals (rAI), is shown by
[16] to yield the convex hull of M?

n when ` = 0.
Luedtke et al. [11] prove that this result also holds
in the case where ` = −u, and compare the tightness
of the convex hull of bilinear functions to that of the
McCormick relaxations.

A central result has been proved by Rikun [15]
on the more general multilinear functions defined on
polyhedra. For such functions, the validity of an in-
equality only needs to be checked at the vertices of
the polyhedron on which they are defined, hence the
convex hull of M?

n is polyhedral. However, said con-
vex hull contains an exponential number of inequal-
ities, which makes it impractical for use in global
optimization solvers except for small n (see e.g. [2]).
Inequalities for M?

4 have been proposed by Cafieri et
al. [5] by “composing” the convex hulls of bilinear
and trilinear terms.
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3. Linear Inequalities for Mn

The derivation of valid inequalities for Mn is
a straightforward generalization of the method
described in Section 1. Similar to M2, we
assume `n+1 ≤ mini∈N{`i

∏
j∈N\{i} uj} (resp.

un+1 ≥ maxi∈N{ui
∏
j∈N\{i} `j}), as otherwise we

can tighten one of the lower (resp. upper) bounds.
Specifically, for i such that `n+1 > `i

∏
j∈N\{i} uj ,

`i is increased to `n+1∏
j∈N\{i} uj

> `i, and for all i

such that un+1 < ui
∏
j∈N\{i} `j , ui is reduced to

un+1∏
j∈N\{i} `j

< ui.

Tangent Inequalities for Mn. Let us denote Pn
the projection of Mn onto Rn: Pn = {x ∈ Rn : `i ≤
xi ≤ ui, i ∈ N, `n+1 ≤

∏
i∈N xi ≤ un+1}. Define

LCn := {x ∈ Pn :
∏
i∈N xi = `n+1};

UCn := {x ∈ Pn :
∏
i∈N xi = un+1}.

The following simple result generalizes the validity
of the tangent inequality (2).

Lemma 1 For any x? ∈ LCn, the inequality:∑
i∈N

ai(xi − x?i ) ≥ 0, (4)

where ai :=
∏
j∈N\{i} x

?
j , is valid for Pn.

For n = 2, (4) reduces to (2). We lift (4) to ob-
tain an inequality satisfied by a point on UCn. To
this purpose, consider the parametric point x̂(t) with
components x̂i(t) = min{ui, tx?i } and the set

Γ(x?) = {x ∈ Rn : xi = min{ui, tx?i } ∀i ∈ N, t ≥ 1},

where x? corresponds to t = 1. Also, consider the
function ξ(t) =

∏
i∈N x̂i(t), defined for all t ≥ 1. De-

fine t̂ = min{τ ≥ 1 : ξ(τ) = un+1}, i.e. the minimum
t attaining a point in UCn, and denote x̂ = x(t̂). It
can be shown that such a t̂, in the general case, can
be computed in O(n). Note that, for small values of
t, the gradient of ξ at x̂(t) is proportional to ∇ξ(x?).

Lifted Tangent Inequalities. A lifting of (4)
that satisfies x̂ at equality yields a valid inequality
for Mn. Then the inequality∑

i∈N
ai(xi − x?i ) + b(xn+1 − `n+1) ≥ 0 (5)

holds at equality at x? for any b, while it does at x̂
if
∑

i∈N ai(x̂i − x?i ) + b(un+1 − `n+1) = 0, or

b = b̄ := −
∑

i∈N ai(x̂i − x?i )
un+1 − `n+1

.

Note that, as for M2, b̄ is negative (a positive value
yields a redundant inequality) and depends on x?.

Theorem 1 Inequality (5) is valid for any b ≥ b̄.

A similar result can be proved when starting from
any point x? of UCn, though the analogous inequal-
ity (4) is not valid unless lifted. The derivation is
similar to the one above and is thus omitted.

Note that LTIs have to be amended to the LP re-
laxation; they do not dominate McCormick inequal-
ities, and are thus not sufficient to describe the con-
vex hull of Mn. For instance, the convex hull of M2

is obtained by considering both McCormick inequal-
ities and LTIs [4].

4. Computational Results

In order to assess the utility of the lifted tangent in-
equalities introduced above in the context of MINLP
solvers, we have developed a procedure for generat-
ing LTIs and tested it on a set of MINLP problems.

We have used Couenne [7], an open-source soft-
ware package included in the Coin-OR infrastruc-
ture [10], for all experiments. Couenne is a branch-
and-bound solver that computes a lower bound with
an LP relaxation obtained through reformulation
techniques [12, 18, 20]. As for most MINLP solvers,
Couenne uses a procedure to gradually refine the
LP relaxation by repeatedly solving the LP relax-
ation at each node of the branch-and-bound tree,
obtaining a solution xlp, and seeking an inequality
violated by xlp which strengthens the relaxation.

Generating LTIs amounts to finding x? associated
with a violated LTI. We omit the details of the sep-
aration algorithm, but point out that the procedure
finds a violated LTI in O(n). In these experiments,
at each branch-and-bound node Couenne used up
to four rounds of cuts to refine the LP relaxation.

Although LTIs can be separated for Mn,
Couenne does not generate inequalities for the con-
vex hull of M?

k with k ≥ 3, hence all of our exper-
iments focus on bilinear terms. Products of more
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than two variables are decomposed into a set of bi-
linear terms using the recursive Arithmetic Inter-
val (rAI) technique [16] outlined in Section 2. Al-
though each auxiliary yk introduced by rAI has triv-
ial bounds at the beginning, branching rules (which
may also be imposed on yk) and bound reduction
techniques may reduce its bounds and thus require
separation of LTIs for some, or all, of the bilinear
terms generated.

Also, Couenne can generate LTIs for bilinear sets
M2 not necessarily contained in R3

+ but in any other
orthant, i.e., LTIs are generated when the bound
interval of each variable does not have 0 as an interior
point: if a variable xi of a bilinear term has `i < ui ≤
0, then a fictitious variable x′i with inverted bound
interval [−ui,−`i] replaces xi.

In order to show the utility of LTIs forM2, we have
compared two variants of Couenne, which we call
Couenne and CouenneLTI, on a set of MINLP in-
stances. While the first variant only separates, for
each bilinear term, inequalities (1), the second vari-
ant adds both these and LTIs—recall that there is
no dominance relationship between these two fami-
lies of inequalities.

We have performed tests on 474 instances from
multiple online libraries: globallib1, minlplib2,
and macminlp3. Both variants were allowed two
hours of CPU time. All experiments have been car-
ried out on the Palmetto cluster of Clemson Univer-
sity, which has machines with different CPUs and
amounts of memory. Although a parallel version of
Couenne is currently being developed and the clus-
ter allows running parallel jobs, we have used a serial
version of the code for our tests. Also, in order to
provide a fair comparison, each instance was solved
by the two variants on the same machine.

Out of 474 instances, we only report on the 119
instances that took either or both algorithms more
than one minute. Table 1 summarizes the compari-
son by showing, for each variant, the number of in-
stances

• solved before the time limit (solved);

• solved in at most 90% of the other variant’s time
(best time);

1http://www.gamsworld.org/global/globallib.htm
2http://www.gamsworld.org/minlp/minlplib.htm
3http://www.mcs.anl.gov/~leyffer/MacMINLP

Alg Solved Best time Best nodes Best lower
A1 26 15 7 24
A2 26 8 11 32

Table 1: Summary of the comparison between
Couenne (A1) and CouenneLTI (A2).

• solved using at most 90% of the other variant’s
BB nodes (best nodes);

• for which the variant obtained the best lower
bound (best lower).

The first three parameters refer to instances that
at least one variant solved before the time limit,
whereas the last one refers to the instances that nei-
ther algorithm could solve to optimality. It appears
that separating LTIs on “easy” instances, i.e., those
that can be solved within the time limit, is of lim-
ited impact (mainly on the number of BB nodes)
and actually may lead to an increase in CPU time.
However, when both algorithms take more than two
hours, LTIs help obtain a better lower bound.

Table 2 shows in more detail the performance of
both variants of Couenne for some of the instances
where the difference in performance is significant, re-
gardless of whether Couenne or CouenneLTI ob-
tained a better result. A more complete report can
be found in [4]. The better performance is in bold.
The parameters reported in the columns are:

• Name, var, con: Name of the instance, number
of variables and of constraints;

• T(lb): the CPU time taken to solve the problem
to optimality, or, if no solution was found within
the time limit, the lower bound in brackets;

• node: the number of BB nodes used before prov-
ing optimality or the time limit was passed;

• ub: the best known upper bound.

Although the results are only sketched here for
reasons of space, it is apparent that some in-
stances highly benefit from adding LTIs. Certain
instances (nvs23, nvs24, st-e35) can be solved
much more quickly, although it appears that for oth-
ers (bayes2-10, bayes2-30, bayes2-50, tln5) LTIs
have the opposite effect.

http://www.gamsworld.org/global/globallib.htm
http://www.gamsworld.org/minlp/minlplib.htm
http://www.mcs.anl.gov/~leyffer/MacMINLP
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Couenne CouenneLTI
Name var con t(lb) nodes t(lb) nodes ub
bayes2-10 86 72 3553 124k (0) 67k 2.55e-4
bayes2-30 86 75 3072 130k (0) 1.5m 4.61e-4
bayes2-50 86 76 6140 1727 (0) 2057 0.9298
camcge 209 209 (-4036) 535 (-6092) 426 -191.74
ex5-2-5 32 19 (-4832) 1.6m (-4775) 2.1m -3500
ex5-4-4 27 19 (7257) 3.1m (7801) 2.1m 10077.8
hhfair 27 25 252 30k 168 23k -87.159
space-25 893 235 (89.4) 4388 (90.9) 5278 483.811
nvs23 9 9 (-1240) 2.7m 237 61k -1125.2
nvs24 10 10 (-1200) 2.5m 6054 1.7m -1033.2
st-e35 29 33 (42443) 1.1m 496 210k 64868
tln5 35 30 2506 2.4m (9.86) 4.5m 10.3
tln7 63 42 (7.73) 123k (9.31) 1.5m 15.6
water4 195 137 (716.7) 1.3m (655.1) 957k 965.47
waterx 70 54 (636.7) 58k (652.4) 106k 973.91

Table 2: Comparison between Couenne and
CouenneLTI on select instances. Under “t(lb)”
columns are reported the CPU time or, if more than
two hours, the lower bound in brackets; “ub” is the
best known upper bound.

5. Concluding Remarks

We have described a family of linear inequalities of
the convex hull of a class of nonconvex sets widely
used in MINLP. Their efficiency has only been tested
on products of two variables, but we expect to imple-
ment the more general procedure in the near future
and apply it to MINLP problems with products of
more than two variables.
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CyberInfrastructure for
Mixed-Integer Nonlinear

Programming

Ignacio E. Grossmann
Carnegie Mellon University (grossmann@cmu.edu).

Jon Lee
IBM T.J. Watson Research Center (jonlee@us.ibm.com).

Carnegie Mellon University and the IBM T.
J. Watson Research Center researchers have de-
veloped a Collaborative CyberInfrastructure for
Mixed-Integer Nonlinear Programming (MINLP):
http://www.minlp.org, which is funded by the
funded by the National Science Foundation under
Grant OCI-0750826: “OpenCyberInfrastructure for
Mixed-integer Nonlinear Programming: Collabora-
tion and Deployment via Virtual Environments”.
The core team consists of: Larry Biegler, Ignacio
E. Grossmann, François Margot and Nick Sahini-
dis of CMU, and Jon Lee and Andreas Wächter of
IBM. Additional collaborators include: Pietro Be-
lotti (Clemson University), Pedro Castro (INETI)
and Juan Ruiz (CMU). The site was launched in Oc-
tober, 2009. The current homepage is shown below.
Over the last 12 months the site has had between
500 and 1000 daily hits, and between 80 and 130
daily visits.

Optimization has been recognized as one of the
strategic technologies for cyberinfrastructure com-
putational tools. Many of the challenging optimiza-
tion models require the use of discrete variables (of-

grossmann@cmu.edu
jonlee@us.ibm.com
http://www.minlp.org
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ten 0-1 variables) to represent logical choices, as well
as the handling of nonlinearities in order to accu-
rately predict the performance of physical, chemi-
cal, biological, financial or social systems. These op-
timization problems give rise to MINLP problems,
which in 0-1 variables have the general form:

min Z = f(x, y)

s.t. g(x, y) ≤ 0

x ∈ X, y ∈ Y
X = {x|x ∈ Rn, xL ≤ x ≤ xU , Bx ≤ b}
Y = {y|y ∈ {0, 1}, Ay ≤ a}

In a form emphasizing the logical choices, such
an MINLP can be represented as a Generalized
Disjunctive Programming (GDP) problem in terms
of Boolean and continuous variables and alge-
braic equations, disjunctions and logic propositions.
Namely,

min Z =
∑
k

ck + f(x)

s.t. r(x) ≤ 0

∨
j∈Jk

 Yjk
gjk(x) ≤ 0
ck = γjk

 k ∈ K

Ω(Y ) = true

x ∈ Rn, ck ∈ R1

Yjk ∈ {true, false}
While MINLP optimization methods can be suc-

cessfully applied to a very wide class of MINLP
problems, it represents one of the most challenging
class of optimization problems. On the combinato-
rial side, MINLP are known to be “NP hard” (in fact,
even undecidable as decision problems). On the side
of continuous nonlinearities, many MINLP models
are nonconvex, which implies that continuous relax-
ations typically give rise to many local solutions.

The number of computer codes for solving MINLP
problems has increased in the last decade. The pro-
gram DICOPT [9] is an MINLP solver that is avail-
able in the modeling system GAMS [4], and is based
on the outer-approximation method [5] with heuris-
tics for handling nonconvexities. A similar code
to DICOPT, AAOA, is available in AIMMS. Codes
that implement the branch-and-bound method in-
clude the code MINLP-BB that is based on an SQP

algorithm [8] and is available in AMPL, and the
code SBB which is available in GAMS [9]. Both
codes assume that the bounds are valid even though
the original problem may be nonconvex. The code
α-ECP that is available in GAMS implements the
extended cutting plane method by Westerlund and
Pettersson [12], including the extension by Wester-
lund and Pörn [13]. The open source code Bon-
min [3] implements the branch-and-bound method,
the outer-approximation and an extension of the
LP/NLP-based branch-and-bound method in one
single framework. FilMINT [1] also implements
a variant of the LP/NLP-based branch-and-bound
method. Codes for the global optimization that im-
plement the spatial branch-and-bound method in-
clude BARON [9], LINDOGlobal [7], and Couenne
[2]. As for codes for solving GDP problems the only
ones that are currently available are LOGMIP [10]
and EMP [6].

While there are a number of websites that
have been aimed at comparing the compu-
tational performance of MINLP codes (e.g.
MacMINLP: AMPL collection of Mixed-Integer
Nonlinear Programs http://wiki.mcs.anl.gov/

leyffer/index.php/MacMINLP, and MINLP World
http://www.gamsworld.org/minlp/index.htm),
the major goal of our website is to create a library
of optimization problems, in different application
areas, for which one or several alternative models
are presented with the derivation of their math-
ematical formulations. The emphasis is on the
formulation of models, because this is an area that
is particularly critical in MINLP, where alternative
formulations can often have vastly different compu-
tational performance [14]. One goal is to illustrate
and discover good and bad practices of MINLP
modeling. Each model has one or several instances
that can serve to test various algorithms. While we
are emphasizing MINLP models, MILP and NLP
models can also be submitted, particularly if they
are relevant to problems that also have MINLP
formulations. Furthermore, we have recently added
GDP problems, linear and nonlinear.

The MINLP cyberinfrastructure website is aimed
at the optimization community that is increasingly
interested in the solution and application of MINLP
problems. This community involves academics and
people from industry, and is highly multidisciplinary.

http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
http://www.gamsworld.org/minlp/index.htm
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It involves operations researchers, industrial, chem-
ical and mechanical engineers, economists, chemists
and biologists. This community, however, is largely
disconnected, especially between algorithm develop-
ers and application domain researchers.

Our website provides a mechanism for the entire
spectrum from researchers to users to contribute to-
wards the creation of this library of optimization
problems, and to provide a forum of discussion for
algorithm developers and application users where al-
ternative formulations, as well as performance and
comparison of algorithms can be discussed. The
website, which was launched in October 2009, con-
tains information on tutorials, a bibliography and
links to other resources on MINLP.

The information that is required for submitting a
problem is structured as follows:

Problem Title.

Problem Statement: pdf file that describes pre-
cisely the problem with all the required assump-
tions. The problem statement is independent of
any model formulation.

Overview of Session: pdf file that briefly expands
on the problem (qualitatively) and describes
major features of formulations submitted for
that submission session.

Models: pdf files describing the mathematical
models and their derivation.

Instances: GAMS/AMPL/AIMMS input and out-
put files. The size of the model is specified by
the user for each instance.

Results, Analysis & Data: pdf file where the au-
thor reports results obtained with the supplied
models and presents an analysis of them. The
data for the various instances are included in an
appendix of this file.

Admittedly, the effort involved in the submission
of these problems is not small. However, in order to
facilitate this task, we have provided a detailed guide
as well as examples at the link http://www.minlp.

org/goals/instructions.php. When authors sub-
mit a problem, it is examined by the administrator
who either approves or suggests changes to the sub-
mission.

The functionality of the website is such that if an
author submits problem with one or several models,
instances and results, other authors or the same au-
thor can submit in subsequent sessions alternative
models or instances for that problem. A possible
scenario is as follows. Session 1: author X submits
problem statement, models A & B, instances and re-
sults. Perhaps another researcher, author Y, finds a
better model C, and submits Session 2 for that same
problem, where author Y submits new model C, in-
stances and results. Discussion between authors X
and Y can then take place within a wiki forum that
is available in the site. Next, perhaps author X finds
that he/she can solve larger problems with his/her
model and submits Session 3 in which author X sub-
mits new instances, and results for models A, B, C.

The library currently contains 27 MINLP prob-
lems that were submitted in areas such as engineer-
ing, operations management, physics and finance.
The list is as follows:

• Crude-oil operations scheduling.

• Inventory-production-distribution problems
with direct shipments.

• Optimal scheduling of multistage batch plants.

• Integrated process water networks design prob-
lem.

• Cutting stock optimization problem for the pro-
duction of carton board boxes.

• Optimal simultaneous synthesis of heat ex-
changers network.

• Optimal scheduling of refined products pipelines
and terminal operations.

• Disjunctive strategies for optimization of
pipeline operations.

• Extended pooling problem with the summer
time (EPA) complex emissions constraints.

• Optimization of metabolic networks in biotech-
nology.

• Close-enough vehicle routing problem.

• Simultaneous cyclic scheduling and control of a
multiproduct continuous stirred tank reactor.

http://www.minlp.org/goals/instructions.php
http://www.minlp.org/goals/instructions.php
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• Optimal separation sequences based on distilla-
tion: from conventional to fully thermally cou-
pled systems.

• Close-enough traveling salesman problem.

• The delay constrained routing problem.

• A deterministic security constrained unit com-
mitment model.

• Stochastic portfolio optimization with round lot
trading constraints.

• Stabilizing controller design and the Belgian
chocolate problem.

• Design of telecommunication networks with
shared protection.

• Optimal design of multiproduct batch plant.

• Solving MINLPs with Dinkelbach’s Algorithm
and MINLP Methods.

• Polygeneration energy systems design.

• Periodic scheduling of continuous multiproduct
plants.

• Optimization model for density modification
based on single-crystal X-ray diffraction data.

• Supply chain design with stochastic inventory
management.

• Optimization of a class of hybrid dynamic sys-
tems.

• Water treatment network design.

As an example, in the above list, the problem
“Optimal design of multiproduct batch plant”, de-
scribes a nonconvex MINLP and convexified MINLP
formulation in which the performance of DICOPT
is shown to be significantly faster than SBB and
BARON. In the problem “Optimal periodic schedul-
ing of continuous multiproduct plants”, the MINLP
has a linear fractional objective that is not solvable
with many of the standard codes (DICOPT, SBB, α-
ECP, BARON). The problem “Optimization model
for density modification based on single-crystal X-
ray diffraction data”, describes alternative models,
an MINLP and two MILPs, both extremely large

in size, which have not been solved to optimality.
The “Water treatment process design problem” de-
scribes two alternative models, one in terms of flows
and compositions, the other in terms of individ-
ual flows and split fractions. Both cannot solved
be to global optimality without proper lower and
upper bounds on the variables. Furthermore, the
model with flows and composition leads to fewer
nodes in the spatial branch and bound with BARON.
The problem “Optimization of hybrid dynamic sys-
tems” compares a formulation with complementarity
constraints, which leads to a continuous nonconvex
NLP, that is shown to solve much faster than the
corresponding MINLP model.

The GDP problems that have been submitted are
the following:

• Process synthesis problem.

• 2-D constrained layout.

• Strip-packing problem.

• Job-shop scheduling.

In these problems, reformulation based on big-M
transformation and convex-hull are compared. In
the case of the “Process synthesis problem” the per-
formance of the logic-based outer-approximation al-
gorithm is also analyzed.

In summary, we believe that our cyberinfrastruc-
ture website for MINLP offers unique problems and
capabilities. The site also provides information on
various resources, meetings and an extensive bibliog-
raphy. We welcome any new contributions to expand
the library of problems. For feedback on this site,
comments are welcome at: minlp@andrew.cmu.edu.
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Bulletin

Paul Tseng Lectureship Prize

The Mathematical Optimization Society invites nom-
inations for the Paul Y. Tseng Memorial Lecture-
ship in Continuous Optimization. This prize was es-
tablished in 2011 and will be presented for the first
time at the Twenty First International Symposium
of Mathematical Programming (ISMP) in 2012, and
triennially at each ISMP thereafter. The lecture-
ship was established on the initiative of family and
friends of Professor Tseng, with financial contribu-
tions to the endowment also from universities and
companies in the Asia-Pacific region. The purposes
of the lectureship are to commemorate the outstand-
ing contributions of Professor Tseng in continuous
optimization and to promote the research and ap-
plications of continuous optimization in the Asia-
Pacific region.

The lectureship is awarded to an individual for
outstanding contributions in the area of continuous
optimization, consisting of original theoretical re-
sults, innovative applications, or successful software
development. The primary consideration in the se-
lection process is the quality and impact of the candi-
date’s work in continuous optimization. A secondary
consideration is to select candidates with strong in-
terests to promote continuous optimization research
in the Asia-Pacific region. However, there is no geo-
graphic restriction on the candidates.

The prize will be presented at the 2012 Interna-
tional Symposium on Mathematical Programming
(ISMP), to be held August 19-24, 2012, in Berlin,
Germany. The Tseng lecture will be arranged in a
time slot devoted to the presentation of named lec-
tures at ISMP-2012.

Nomination Material. The nomination must in-
clude a nomination letter of no more than two pages
and a short CV of the candidate (no more than two
pages, including selected publications). In addition,
the nominator should also arrange for 1-2 letters of
recommendation. All nomination materials should
be sent (preferably in electronic form, as pdf docu-
ments) to the chair of the selection committee,

http://www.gams.com/presentations/present_gor08_emp.pdf
http://www.gams.com/presentations/present_gor08_emp.pdf
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Sven Leyffer,
Mathematics and Computer Science Division,
Argonne National Laboratory,
Argonne, IL 60439, USA,
leyffer@mcs.anl.gov.

Deadline. All nomination materials must be re-
ceived by November 15, 2011.

Paul Y. Tseng Memorial Lectureship Committee.

• Sven Leyffer (chair), Argonne National Labora-
tory, USA.

• Duan Li, Chinese University of Hong Kong,
Hong Kong.

• Stefan Ulbrich, Technical University of Darm-
stadt, Germany.

• Naihua Xiu, Beijing Jiaotong University, China.

Chairman’s Column

I feel honored to have been selected as the chair
of the SIAM Activity Group on Optimization for
the next three years. I and the other new offi-
cers, Mihai Anitescu, Miguel Anjos, and Marina
Epelman, will try to maintain its exemplary status
and activities. Please feel free to contact us with
any suggestions: our email addresses are available
at the group’s home page, http://www.siam.org/
activity/optimization.

Let me start by thanking our predecessors,
Michael Ferris and his team of Tom McCormick,
Steve Vavasis, and Yinyu Ye, for leaving us in such a
great state. We are the second largest activity group
(trailing Computational Science and Engineering),
with a large international representation, a high pro-
portion of student members, and diverse representa-
tion in different academic disciplines and employ-
ment types. We have a distinguished journal, an
outstanding series of conferences starting with the
first in Boulder in 1984 and leading up to Darm-
stadt this year, and an excellent newsletter edited
with flair and efficiency by Sven Leyffer; I am very
glad to report that Sven has agreed to continue in
this role.

I like to think of the optimization people in SIAM
not so much as a group and more as a community.
Our colleagues tend to exhibit less of the competition
and infighting typical in other areas (a recent quote
from Larry Summers of Harvard: “I’m one of the
few people who went to Washington to get out of
politics”), with a healthy willingness to get involved
and help the profession. And so I’d like to devote
this first column to the theme of collaboration.

While our job evaluation criteria may at times
seem to encourage us to be proprietorial about our
research, those of us who have been around a few
years know the great benefits of research collabora-
tion, both in advancing science and in personal satis-
faction. Of course, junior scientists need to move out
of the shadow of their advisors, but working with a
variety of collaborators, possibly in a range of disci-
plines, can be very rewarding. My own research went
through a “phase transition” about ten years after
my Ph.D., from almost wholly singly-authored pa-
pers to almost wholly co-authored — and the change
should have happened earlier!

One venue in which to meet new colleagues, share
new ideas, and explore new collaborations is that of
professional meetings. We all enjoy the intense at-
mosphere of focused workshops in our own specialty,
where young researchers rub shoulders with estab-
lished leaders and advance the state of the art. Per-
haps even more stimulating are such workshops on
topics closely related but distinct from our own spe-
cialties, where we learn about cutting-edge research
to which our perspective and experience might con-
tribute. There is also great value in more general
meetings, like the triennial SIAM conferences on op-
timization, where we are exposed to a wide range of
topics and get to appreciate the broad applicability
of all areas of optimization.

So I hope you will take full advantage of the up-
coming conference in Darmstadt. The organizing
committee has put together an outstanding program
with a wide range of invited presentations covering
theory, computation, and applications. I invite you
to step a little outside your comfort zone in attend-
ing sessions where you will be exposed to new tech-
niques and areas of application. Optimization is in-
volved in so many disciplines beyond its initial appli-
cations in logistics, planning, and engineering design:
for example in service industries, with problems in

leyffer@mcs.anl.gov
http://www.siam.org/activity/optimization
http://www.siam.org/activity/optimization
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call center staffing and emergency vehicle location
and scheduling; in image reconstruction, sensor lo-
cation, compressed sensing, and high-dimensional
structured statistics; and in medicine and biology.

The last issue of Views-and-News contained a fas-
cinating article by Fengqi You and Sven Leyffer on
applying optimization to remediation efforts after
the Gulf oil spill, and a 2009 issue was devoted to the
public side of optimization. These examples show
that our field addresses pressing social problems as
well as those of economic efficiency. One hopes that
optimization can also play a role in dealing with
natural disasters such as the recent ones in Haiti,
Pakistan, New Zealand, and Japan. I am sure Sven
would be pleased to hear of such stories.

I look forward to seeing you in Darmstadt!

Michael J. Todd, SIAG/OPT Chair
School of Operations Research and Information
Engineering
Cornell University
229 Rhodes Hall
Ithaca, NY 14853
USA
mjt7@cornell.edu

http://people.orie.cornell.edu/~miketodd/

todd.html

Comments from the Editor

Over the past years, mixed-integer nonlinear pro-
gramming (MINLP) has steadily grown in impor-
tance. An IMA hot-topics workshop on MINLP in
2008 was followed by a second workshop in Marseille
on the same topic in 2010, and a third workshop is
in the planning stages. The 2009 ISMP meeting in-
cluded for the first time a cluster explicitly devoted
to MINLP. The two papers in the issue describe dif-
ferent aspects of this burgeoning field.

The first paper by Belotti, Miller, and Namazi-
far shows how to obtain strong linear inequalities
for simple mixed-integer nonlinear sets that involve
nonconvex multilinear functions. This paper exem-
plifies some current research activities in MINLP,
where authors study simple sets of nonlinear func-
tions to obtain tight polyhedral or conic relaxations.

The second paper by Grossmann and Lee de-
scribes a new cyber-infrastructure for MINLP. Their

goal is to collect and annotate applications of
MINLP, providing a focus for multi-disciplinary
users of MINLP. The web-site, http://www.minlp.
org, allows users to compare formulations, and pro-
motes good modeling practices in optimization.

We are already planning the next issue of Views-
and-News, which will feature a number of short pa-
pers from the SIAM Conference on Optimization.
Our long-term goal is to increase the number of is-
sues from two to three per year. Please contact Mike
Todd, or myself if you have suggestions for topical
issues that you’d like to edit, or papers that you’d
like to contribute.

Send your comments, suggestions, papers, or com-
plaints to:
Sven Leyffer, Editor
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA
leyffer@mcs.anl.gov

http://www.mcs.anl.gov/~leyffer/

mjt7@cornell.edu
http://people.orie.cornell.edu/~miketodd/todd.html
http://people.orie.cornell.edu/~miketodd/todd.html
http://www.minlp.org
http://www.minlp.org
leyffer@mcs.anl.gov
http://www.mcs.anl.gov/~leyffer/
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