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NEW OPTIMIZATION METHODS
ROOTED IN BIOLOGY AND PHYSICS

Traditional optimization methods are broadly applica-
ble. However, during the past decade, considerable at-
tention has been paid to new methods that are rooted in
fundamental paradigms of biology and physics, and have
evolved specifically in relation to these subjects.

Three primary examples are methods based on simu-
lated annealing, genetic crossover and neural networks.
They have significant overlap and exhibit some or all of
the following characteristics that distinguish them from
more traditional global optimization approaches:

¢ randomization techniques are employed in an essen-
tial way.

¢ optimization problems involving objective functions
(potential surfaces) that are nonsmooth with numer-
ous local minima are amenable to solution by virtue
of their possessing an underlying statistical struc-
ture.

¢ parallelism arises inherently within the procedures.

o the requirement of monotonicity of objective func-
tions values at successive iterates is not imposed.

e the methods are especially relevant for combinato-
rial (discrete) optimization, but can be formulated
to handle continuous optimization problems as well.

A brilliant and eloquent book entitled The Origins of
Order: Self-Organization and Selection in Evolution, Ox-
ford University Press, 1993, by Stuart Kaufmann (Uni-
versity of Pennsylvania and the Santa Fe Institute), in
particular, Chapters 2 and 3, offers some fascinating in-
sights into the relative merits of the above methods. Its
broader content will also be of interest to the optimiza-
tion community because, after all, evolution presents the
ultimate example of a complex optimization problem.

Kaufmann introduces the N K model for describing se-
lective evolution, for example, of RNA molecules or pro-
teins for a well-defined fitness property, say the ability
to catalyze a specific reaction. N refers to the number
of parts in the system, for instance, gene loci in a geno-
Lype or amino acids in a protein. Each part (gene locus)
has say 2 candidates (alleles), i.e., the total number of
genotypes is 2%, and mutation takes one genotype to an-
other. (For example, each genotype has N one-allele mu-
tant neighbours.) Each part makes a fitness contribution

which depends on the allele at that part and the alleles
at upto K < N — 1 other parts'among the N, i.e., K re-
flects the ‘epistatic interactions’ among the components.
A method is proposed for assigning a ‘fitness’ to a geno-
type and the objective is to maximize fitness. As the main
parameters are altered, the model generates a family of
“fitness landscapes’ with a very interesting underlying sta-
tistical structure. This structure is studied in detail. The
landscapes can vary from relatively smooth with highly
correlated finess values, through increasingly rugged and
multipeaked (perhaps in self-similar form), to maximally
rugged with completely uncorrelated fitness values.

The N K model is closely related to an important class
of models in statistical physics, called spin-glasses. A spin
glass is characterized by particles with spin, either up or
down, in mixture of attractive and repulsive interactions.
A particular spin configuration has a total energy given
by a Hamiltonian and the energy landscape it defines has
many local minima owing to the mixture of interactions.
(the latter description is taken from another important
recent book, The Computational Brain, MIT Press, 1992,
by P. Churchland and T. Sejnowski of UC-San Diego and
the Salk Institute). The range of states or spin configu-
rations explored by a spin-glass is a function of its tem-
perature and is given, at equilibrium, by the ‘Boltzmann
distribution’. At high temperature the physical system is
not trapped by local potential barriers (minima). At low
temperature the system spends most of its time confined
to deep potential wells.

Simulated annealing, developed by Kirkpatrick, Gelatt
and Vecchi, originated in spin-glass physics and the 1953
Metropolis algorithm for simulating behaviour of a many-
body system. It mimics a spin-glass by gradually lower-
ing the analogue of temperature appropriate to the opti-
mization model under consideration, whose cost function
represents ‘spin-glass energy’. In effect, the use of high
‘temperature’ smooths out the ‘energy’ landscape. As
temperature is lowered, the landscape becomes progres-
sively more rugged. If lowered too fast, the system like its
physical counterpart can become trapped in a local min-
imum. However. if temperature is lowered slowly (the
annealing schedule), a very good local energy minimum
will usually be discovered. Kaufmann notes that anneal-
ing is a powerful strategy, but it only works well in land-
scapes in which deep energy wells also drain wide basins.
It does not work well on either a random landscape or a
‘golf course’ potential (p.112).



Kaufmann further observes that there are profound
similarities between the behaviour of a spin-glass phys-
ical system in a complex potential surface at a finite tem-
perature and an adapting population on a rugged fitness
landscape at a finite mutuation rate (p.43). The analogue
of simulated annealing in population flow on rugged land-
scapes 18 to begin with a high mutation rate and gradually
lower it. The search behaviour of a ‘nearly melted’ popu-
lation may mimic important aspects of simulated anneal-
ing (p.112). However, he also says it is unlikely that the
precise analogue of simulated annealing (tuning of muta-
tion rate) plays a role in actual population search on a
rugged fitness landscape.

Genetic recombination coupled with mutation is, of
course, nature’s search strategy of choice, and it pro-
vides the motivation for the genetic algorithm pioneered
by Holland. The N K model also offers insight into the ef-
fectiveness of this algorithmic approach to optimization.
In particular, Kaufmann observes that recombination is
useless on uncorrelated landscapes, but can be effective
under two conditions (1) when the high peaks are near one
another and hence carry mutual information about their
joint locations in genotype space and (2) when parts of
the evolving system are quasi-independent of one another
(K << N), and hence can be interchanged with modest
chances that the recombined system has the advantages
of both parents (p.95). He describes an interesting nu-
merical experiment that illustrates this point (p.115).

Finally, it is interesting to note that spin-glasses also
provided the analogies on which Hopfield was able to draw
for his pioneering work on neural networks (spins rep-
resent neurons and their interactions represent synaptic
strengths). The learning algorithms in neural network
models are based on optimizing a cost function similar
to a spin-glass Hamiltonian that can be visualized as a
rugged fitness landscape. The two references mentioned
above offer some interesting insights into this area as well.
What is more, Kaufmann also discusses the promise of
‘applied molecular evolution’ (p.156-170), which has bear-
ing on the recent breakthrough involving DNA computing
with potentially major implications for optimization.

The foregoing paragraphs, quotations in the main, give
only the merest glimpse into these important and cur-
rently esoteric optimization techniques. The two books
and their extensive bibliographies will serve to draw the
interested reader into the huge research literature on the
subject.
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CHAIRMAN’S COLUMN
by Jorge J. Moré

The votes are in, and apparently Chicago politics is
alive and well because the new chair has strong connec-
tions to Chicago. The new members of the board are

Jorge Moré, Chair
more@mcs.anl.gov

Tim Kelley, Vice Chair
tim kelley@ncsu. edu

Ekkehard Sachs, Secretary/Treasurer
sachsQuni-trier.de

Philip Gill, Program Director
pgill@ucsd.edu

T have not given s-mail addresses because nowadays they
are almost unnecessary. If needed, they can be found in
the STAG/OPT membership directory.

Before plunging ahead with our plans for the future, I
want to thank the previous board for their work. As a
member said, This is a first rate organization, and I really
appreciate the work of the officers. Andy Conn served as
chair; he also served as vice-chair for the previous two
terms. Tim Kelley was the vice-chair, and we are fortu-
nate that he will be serving this term also. He will provide
much needed continuity and sanity. Jorge Nocedal served
as secretary/treasurer. One of these days I will have to
find out what Andy Conn meant by saying that “thanks
to him we have no secrets and no money”. David Gay, as
program director, completed the board.

The first order of business is the SIAG/OPT prize.
This prize is given to the best paper in optimization that
has appeared in a peer-reviewed journal during the four
years preceding the SIAM conference on optimization. As
you know, the SIAM conference on optimization will be
held May 20-22, 1996, in British Columbia, Canada, so
we are looking for papers published in 1991-1995. Tim
Kelley, the chair of the selection committee, will be issu-
ing a call for nominations later on in this year, so start
thinking of appropriate nominations. This requires some
work on your part (a written justification and a citation
not exceeding 25 words), but these awards bring recogni-
tion to researchers in our field.

What else does the SIAG/OPT do? Our purpose is
to foster the development of theory, algorithms, and soft-
ware for optimization, and the use of this technology in
scientific and industrial applications. We organize the
SIAM Optimization meeting and also minisymposia at
other SIAM meetings.

I expect that the SIAG/OPT will sponsor and promote
several workshops during the next three years. Ekkehard
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Sachs has already expressed interested in organizing a
workshop in Europe. We will keep you informed.

We also publish the Views and News newsletter. Larry
Nazareth has been doing an outstanding job as editor,
and his efforts have led to a classy publication. I always
read it and find items of interest. We should be proud of
this newsletter.

What else do we want to do? In my ballot statement
I proposed several projects. Here is my original ballot
statement:

The SIAG on Optimization should foster the develop-
ment of optimization theory, algorithms, and software in
areas of scientific and economic interest. We can do this
by being aware of interesting optimization problems that
arise in the applications areas and by making our work
more accessible to other disciplines. The SIAM Con-
ference on Optimization and the SIAG/OPT newsletter
(Views and News) can be used to promote these issues.
Sponsoring, organizing, and attending smaller, focused
workshops is another way to address these issues. We
could also set up an electronic newsletter (small, infor-
mal, not-too-frequent, moderated) for optimization prob-
lems in application areas, or a World Wide Web server
on interesting optimization problems. A purpose of the
server would be to collect stories (1-3 pages) on successful
uses of optimization in applications.

Is there any interest in the server or the electronic
newsletter? '

The Web server would not be difficult to do, and it
could be used to attract attention to optimization suc-
cess stories. Research budgets are being decreased, and
any information that would show how optimization tech-
nology (theory, algorithms, and software) benefits other
areas would be helpful to program managers. Some of
these success stories have appeared in SIAM News, but
we could use more, and gathered in one place. If there is
interest in this, we may even be able to get STAM to do
it.

The creation of another electronic newsletter or mail-
ing list is more controversial. There are already several
newsletters, newsgroups, and Web pages related to opti-
mization. I receive and read the

opt-net
newsletter. This newsletter can also be accessed via the
\Veb at

http://moa.math.nat.tu-bs.de/opt-net
The na-net newsletter and the associated Web page

http://www.netlib.org/na-net
is also of interest. The newsgroups

sci.op-research

sci.math.num-analysis
are another source of information. The Web page

http://argus-inc.com/informs/informs.html

has information on the INFORMS (Institute for Opera-

tions Rescarch and Management Science), and
http://silmaril.smeal.psu.edu/pol.html

is the information service of INFORMS. In particular,

this service has pointers to the linear programming and

nonlinear programming FAQ (frequently asked questions)

maintained by John Gregory.

I do not claim that the above provides a complete list
of all the Web pages of general interest to optimizers. I
would be interested in hearing of additional sources of
information available on the Web.

Given all this material, is there a need for either the
electronic newsletter or the Web page? Let me know what
you think.

FORUM ESSAYS

OPTIMIZATION IN
MACHINE LEARNING

by O. L. Mangasarian !

1. INTRODUCTION

Optimization has played a significant role in
training neural networks [23]. This has resulted in a
number of efficient algorithms [22,3,5,29,31] and prac-
tical applications in medical diagnosis and prognosis
[34,35,27]. Other applications of neural networks abound
[12,30,18,13] .

In this article, we focus on a number of problems of
machine learning and pose them as optimization prob-
lems. Effective methods for solving these problems are
also briefly described. For more details, the reader
is referred to the extensive bibliography, in particular,
(3,4,23]. Hopefully this work will point to further appli-
cations of optimization to the burgeoning field of machine
learning.

2. MISCLASSIFICATION MINIMIZATION

A fundamental problem of machine learning is to con-
struct (train) a classifier to distinguish between two or
more disjoint point sets in an n-dimensional real space.
A key factor in determining the classifier is the measure of

1Computer Sciences Department, University of Wisconsin, 1210
West Dayton Street, Madison, WI 53706, email: olvi@cs.wisc.edu.
This material is based on research supported by Air Force Office of
Scientific Research Grant F49620-94-1-000036 and National Science
Foundation Grant CCR-9322479.



error used in constructing the classifier. We shall propose
two error measures: one will merely count the number
of misclassified points, while the other will measure the
average distance of misclassified points from a separating
plane. We will show that the first leads to an LPEC (lin-
car program with equilibrium constraints) [24,20] while
the second leads to a single linear program [21,4]. How-
ever, the problem of minimizing the number of misclassi-
fied points turns out to be NP-complete [11,17], but we
shall indicate effective approaches [24,2] that render it
more tractable.

For the sake of simplicity, we shall limit ourselves
to discriminating between two sets, although optimiza-
tion models apply readily to multicategory discrimination
[6,7]. Let .A and B be two disjoint point sets in R" with
cardinalities m and k respectively. Let the m points of A
be represented by the mxp matrix A, while the k points of
B be represented by the k X p matrix B. The integer p rep-
resents the dimensionality of the real space RP into which
the points of A and B are mapped by F': R* — RP, be-
fore their separation is attempted. In the simplest model
p = n and F' is the identity map. However, more complex
separation, say by quadratic surfaces [21], can be effected
if one resorts to more general maps. (Note that complex
separation, like fitting with high degree polynomials, is
not always desirable, since it may lead to merely “mem-
orizing” the training set.) The simplest and one of the
most effective classifiers in RP is the plane

zw=2~0

1)

where w € RP is the normal to the plane, |8]/||w]|2 is the
distance of the plane to the origin in RP, z € R? is a point
belonging to F'(A) or F(B), and ||-||2 denotes the 2-norm.
The problem of training a linear classifier consists then of
determining (w,f) € RP*! so as to minimize the error
criterion chosen. We note immediately that if the sets
I*(A) and F(B) are strictly linearly separable in RP, then
there exist (w, ) € RP+1 such that

Awz el +e

2
Bw<zel—e (2)
where e is a vector of ones of appropriate dimension.
Since, in general (2) is not satisfiable, we attempt its
approximate satisfaction by minimizing the chosen error
criterion.

2.1 Number of Misclassified Points

Let s : R — {0,1} determine the step function that
maps nonpositive numbers into {0} and positive numbers
into {1}. When applied to a vector z € RP, s returns a
vector of zeros and ones in RP, corresponding respectively
to nonpositive and positive components z;, i = 1,...p, of
z. The problem of minimizing the number of misclassi-
fied points then reduces to the following unconstrained
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minimization problem of a discontinuous function:

min ||s(—Aw + ef + €)||
(w,8)eERn+1

3
+(|s(Bw — ef + e)|| ®)

where |- || denotes some arbitrary, but fixed norm, on R™
or R¥. The sets F((A) and F(B) are linearly separable in
RP, if and only if the minimum of (3) is zero, and no
points are misclassified, otherwise the minimum of (3)
“counts” the number of misclassified points if the 1-norm
is used. In [24] it was shown that (3) with the 1-norm is
equivalent to the following LPEC:

minimize

w,8,ru,s,v

er 4+ es
u+Aw—ef —e20
rz0
r(u+Aw —ef —e) =0
—r+e20
uz0
u(—r+e)=0
v—Bw+el—ez0
s20
s(v—Bw+ed—e)=0
—s+ez20
v20

v(-s+e)=0

(4)

subject to

It turns out that problem (4) is extremely difficult to
solve. In fact, almost every point (w,f) € RPt! is a
stationary point, since a small perturbation of a plane
zw = 6 in RP that does not contain points of either
F(A) or F(B) will not change the number of misclassified
points. In order to circumvent this difficulty, a parametric
implicitly exact penalty function was proposed for solving
(4) in [24] and implemented successfully in [2] by an ap-
proach that also identifies outlying misclassified points. A
fast hybrid algorithm for approximately solving the mis-
classification minimization problem is also given in [11].

Another approach to solving (3) is by utilizing the
highly effective smoothing technique [9,10] that has been
used to solve many mathematical programs and related
problems. In this approach, the step function s(¢) is re-
placed by the classical sigmoid function of neural net-
works [18]:

5(0) = 0(6,0) =yt

(5)

where o is a positive real number that approaches
+o00 for more accurate representation of the step function.
With this approximation, the unconstrained discontinu-
ous minimization problem is reduced to an unconstrained
continuous optimization problem, that is however non-
convex. By letting o grow judiciously, effective computa-
tional schemes for tackling the NP-complete problem can
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be utilized. An important application of the misclassifica-
tion error (3), is its use in constructing the more complex
nonlinear neural network classifier of Section 3 below.

2.2 Average Distance of Misclassifications

from Separating Plane

As early as 1964 [8,21], the distance of misclassified
points from a separating plane was utilized to generate
a linear programming problem for obtaining a separating
plane (1) that approximately satisfied (2) by minimizing
some measure of distance of misclassified points from the
plane (1). Unfortunately, all these attempts [22,16,15]
contained ad hoc ways for excluding the null solution
(w = 0) that plagued a linear programming formulation
for linearly inseparable sets. However, the robust model
proposed in [4], which consists of minimizing the average
of the 1-norm of the distances of misclassified points from
the separating plane, completely overcame this difficulty.
"The linear program [4] proposed is this:

7o . ey o ez
i m T3
Aw+yzef +e (6)
subject to Bw—zz2ef—e
¥,220
The key property of (6) is that it gives the
. . . eA . ;
null solution w = 0 if and only if kil ﬁ, in which
m
case w = 0 is guaranteed to be not unique. Compu-

tationally, the LP (6) is very robust, rarely giving rise

to the null solution, even in contrived examples where

A B
% = CT' In the parlance of machine learning [18], the

separating plane (1) is referred to as a “perceptron”, “lin-
ear threshold unit” or simply “unit”, with threshold 8 and
incoming arc weight w. This is in analogy to a human
neuron which fires if the input z € RP, scalar-multiplied
by the weight w € RP, exceeds the threshold 4.

3. NEURAL NETWORKS AS POLYHEDRAL

REGIONS

A neural network can be defined as a generalization
of a separating plane in RP, and can be thought of as
a nonlinear map: RP — {0,1}. One intuitive way to
generate such a map is to divide RP into various polyhe-
dral regions, each of which containing elements of F (A)
or F(B) only. In its general form, this problem is again
an extremely difficult and nonconvex problem. However,
greedy sequential constructions of the planes determining
the various polyhedral regions [22,25,1] have been quite
successful in obtaining very effective algorithms for train-
ing neural networks much faster than the classical online
(that is training on one point at a time) backpropagation
(BP) gradient algorithm [32,18,26]. Online BP is often
erroneously referred to as a descent algorithm, which it is

not.

In this section of the paper we relate the polyhedral
regions into which R? is divided, to a neural network
with one hidden layer of linear threshold units. It turns
out that every such neural network can be related to a
partitioning of RP into polyhedral regions, but not the
converse. However, any two disjoint point sets in R? can
be discriminated between by some polyhedral partition
that corresponds to a neural network with one hidden
layer with a sufficient number of hidden units [19,25].

We describe now precisely when a specific partition of
RP by h separating planes

(7)

corresponds to a neural network with h hidden units. The
h separating planes (7) divide RP into at most ¢ polyhe-
dral regions, where [14]

(8)

We shall assume that F/(A) and F(B) are contained in
the interiors of two mutually exclusive subsets of these
regions. Each of these polyhedral regions can be mapped
uniquely into a vertex of the unit cube in R?,

{zl]z€ R*, 022 ¢} (9

by using the map:

s(zw' —6), i=1,...,h (10)
where s is the step function defined earlier, and « is a
point in R? belonging to some polyhedral region. If the r
polyhedral regions of RP constructed by the h planes (7)
are such that vertices of the cube (9) corresponding to
points in A, are linearly separable in R" from the vertices
of (9) corresponding to points in B by a plane

2v =T, (11)
then the polyhedral partition of RP corresponds to a neu-
ral network with % hidden linear threshold units (with
thresholds ¢, incoming arc weights w®, i = 1,..., h) and
output linear threshold unit (with threshold 7 and in-
coming arc weights v;, ¢ = 1,..., h [23]) . This condition
is necessary and sufficient for the polyhedral partition of
RP in order for it to correspond to a neural network with
one layer of hidden units. For more detail and graphical
depiction of the neural network, see [23]. “Training” a
neural network consists of determining (w?, 6°) € RPH1,
i=1,...,h, (v,7) € R*? such that the following non-



linear inequalities are satisfied as best as possible:

h
Zs(Awi —ef)v; 2er+e
iil (12)
Zs(Bwi —ef)v; Ser—e
i=1

'This can be achieved by minimizing the number of mis-
classified points in R* by solving the following uncon-
strained minimization problem

h
2 _ A i _ 01' ;
T I Do (4w = et er )
h = (13)
+”‘S(Z s(Bw' — ef')v; — e + )|
i=1

where the norm is some arbitrary norm. If the square of
the 2-norm is used in (13) instead of the 1-norm, and if the
step function s is replaced by the sigmoid function in (13),
we obtain an error function similar to the error function
that BP attempts to find a stationary point for, and for
which a convergence proof is given in [26], and stability
analysis in [33]. We note that the classical exclusive-or
(XOR) example [28] for which F is the identity map and
10 0
A= 0 1y’ B= 11
(13) with the following solution:

wh ) =((2 —2), 1), (w?,6?) = -2 2),1
W) (2 0. @O =(2 D0

It is interesting to note that the same solution for
the XOR example is given by the greedy multisurface
method tree (MSMT) [1]. MSMT attempts to separate
as many points of A and B as possible by a first plane
obtained by solving (6), and then repeats the process
for each of the ensuing halfspaces, until adequate sepa-
ration is obtained. For this example, the first plane ob-
tained [4] is (w!,8') = ((2 ~—2), 1), which separates
{(1,0)} from {(0,0),(0,1),(1,1)}. The second plane ob-
tained is (w?,6?) = ((=2 2), 1), separates {(0,1)} from
{(0,0),(1,1)}, and the separation is complete between .4
and B. These planes correspond to a neural network that
gives a zero minimum to (13), which of course is not al-
ways the case. However, MSMT frequently gives better
solutions than those generated by BP and is much faster
than BP.

] , gives a zero minimum for
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PATTERN SEARCH METHODS
FOR NONLINEAR OPTIMIZATION

by Virginia Torczon !

1. INTRODUCTION
In 1961, Hooke and Jeeves [8] coined the term direct
search

.. .to describe sequential examination of trial so-
lutions involving comparison of each trial solu-
tion with the “best” obtained up to that time
together with a strategy for determining (as a
function of earlier results) what the next trial
solution will be.
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In the intervening years, the term direct search has
come to refer to any method that does not use derivatives
or approximations of derivatives to solve the problem

n}in f(=z),

where £ € R"™ and f : R® — R. Instead the search is
directed using only function values. Thus direct search
properly includes such disparate methods as the pattern
search method proposed by Hooke and Jeeves [8], the
wildly popular genetic algorithms [7], the Nelder-Mead
simplex method [11] (a Science Citation Classic), and ran-
dom search methods [2].

Few of the direct search methods were conceived with
any sort of convergence analysis in mind. Notable ex-
ceptions include the conjugate directions method pro-
posed by Powell [15,25] and the class of deformed con-
figuration methods proposed by Rykov and his colleagues
[18,17,19,9].

However, recent work [23] shows that a significant sub-
set of the direct search algorithms—a class we call pattern
search methods in deference to Hooke and Jeeves—share
a structure that makes a unified convergence analysis pos-
sible for the algorithms as originally conceived. The sur-
prising conclusion of this analysis is that global conver-
gence results comparable to those for line search [12] and
trust region [10] globalization strategies are possible, even
though gradient information is neither explicitly calcu-
lated nor approximated.

The key to the convergence analysis is that we are able
to relax the conditions on accepting a step by placing
stronger conditions on the step itself.

2. GENERALIZED PATTERN SEARCH

Pattern search methods follow the general form of most
optimization methods: given an initial guess at a solution
zp and aninitial choice of a step length parameter Ag > 0,

ALGORITHM 1. General Pattern Search
Fork=0,1,...,

a) Check for convergence.
b) Compute f(zp).

¢) Determine a
MOVeS(Ak, Pk).

step sy using Exploratory

d) If f(zx) > f(xx + si), then zx41 = 24 + s3. Other-
wise Zgpy1 = Tg.

e) Update(Ag, Py).

Pattern search methods only require simple, as opposed
to sufficient, decrease on the objective function. This
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weaker condition is possible because we require that the
step be defined by A; and the pattern P, and we place
certain mild conditions on both the Exploratory Moves
and the way in which we update A to guarantee global
convergence. We do not need any derivative information
because we do not need to enforce the classical sufficient
decrease conditions, such as the Armijo—Goldstein—Wolfe
conditions used for line search methods or the fraction
of Cauchy decrease or fraction of optimal decrease condi-
tions used for trust region methods.

A pattern Py is defined by two components, a real non-
singular basis matriz B € R*X" and an integer generat-
ing matriz Cy € Z"*P  where p > 2n. In addition, the
columns of Cy must contain a core pattern represented by
M, € M C Z™"*" and its negative —My, where M is a
finite set of nonsingular matrices (thus ensuring that Cy
has full row rank).

A pattern P; is then defined by the columns of the
matrix P, = BC}. Since both B and C} have rank n,
the columns of P, span R™. The steps are of the form
sy = AgBceg, where ¢ € C). (We adopt this convenient
abuse of notation to indicate that cj is a column of Cy.)

We require that the Exploratory Moves satisfy two hy-
potheses:

HYPOTHESES ON EXPLORATORY MOVES.
1. s € APy = A BCy.

2. If min{f(zx + y), ¥y € AxB[M,—Mi]} < f(zx),
then f(zix + sx) < f(xr).

The second hypothesis is more interesting. It suggests
that if descent can be found for any one of the 2n steps
defined by the core pattern, then the Exploratory Moves
must return a step that gives simple decrease. There is no
requirement that such a step must be defined by the core
pattern, nor that all 2n steps defined by the core pattern
must be evaluated, or even that the step returned give
the greatest decrease possible.

Thus, a legitimate Exploratory Moves algorithm would
be one that somehow “guesses” which of the steps defined
by Ay P, will produce simple decrease and then evaluates
only that single step. At the other extreme, a legitimate
Exploratory Moves algorithm would be one that evaluates
all p steps defined by AP and returns the step that
produced the least function value.

The core pattern guarantees that at least one of the 2n
directions defined by the columns of [My, —Mj] is a de-
scent direction when V f(zx) # 0. Thus the Exploratory
Moves algorithm must contain a safeguard to ensure that
these 2n directions are polled if the other strategies em-
ployed do not produce a step that gives simple decrease

on f(zz).
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To finish our specification we give a simplification of the
technique for updating the step length control parameter
Ag. (For a full specification of the update procedures for
both Ay and P; = BCy, see [23].)

ALGORITHM 2. (Simplified) Update for Ag.
Given =2, 0 =771 and A\ € {7, 71}.

a) If f(:vk +55) < f(:L‘k), then Agqpq = AL Af.
b) Otherwise, Ap1 = A,

Here Ay may be reduced if and only if simple decrease
has not been realized.

The general specification for pattern search methods
is rich enough to capture a variety of direct search al-
gorithms. These include coordinate search with fixed
step lengths (Davidon [4] describes its use by Fermi and
Metropolis to set phase shift parameters), the evolution-
ary operations algorithm of G.E.P. Box [1], the pattern
search method of Hooke and Jeeves [8], and the multidi-
rectional search algorithm of Dennis and Torczon [6,21].

The general specification also leads to global conver-
gence results. The goal of the next section is to show
that pattern search methods are as robust as their pro-
ponents have long claimed and to demonstrate that the
convergence analysis is comparable to that for line search
and global trust region strategies.

3. ANALYSIS

Critical to proving global convergence of pattern search
methods is recognizing the algebraic structure of the it-
erates, a structure that is independent of the function to
be optimized. This leads to the following theorem.

Theorem 1: Any iterate zn produced by a general pat-
tern search (Algorithm 1) can be expressed in the follow-
ing form:

N-1
IN = zg+ (,8’“3 a_"UB) AoB Z 2k,
k=0
where

e B/a =1, with @, 8 € N and relatively prime, and 7
1s as defined in the algorithm for updating A; (Al-
gorithm 2),

e rrzp and ryp depend on N,
e 2, €2, k=0,...,N —1.

The import of this theorem is that all the iterates lie
on a scaled, translated integer lattice. The basis depends
on the initial choice of Ag and the basis matrix B, the
translation depends on the initial choice of z, and the

scaling is based solely on the sequence of updates that
have been applied to A, for k= 0,...,N — 1. (See [23]
for a proof.)

With this theorem in hand, it is then possible to prove
the following theorem regarding the global convergence
behavior of pattern search methods.

Theorem 2: Assume that L(zo) = {z : f(z) < f(z0)}
is compact and that f : R® — R is continuously differ-
entiable on L(zo). Then for the sequence of iterates {zz}
produced by the general pattern search (Algorithm 1),

lim inf ||V f(zi)| = 0.

There are three key points to the proof [23]. First, it
is straightforward to show that pattern search methods
are descent methods. Second, it is possible to prove that
pattern search methods are gradient-related methods (as
defined in [13]). The third and final part of the argument
involves a proof by contradiction to show that the algo-
rithm cannot terminate prematurely due to inadequate
step length control mechanisms.

The proof that pattern search methods are descent
methods uses differentiability, the core pattern, the Hy-
potheses on.the Exploratory Moves and the update rules
for Ax. The n columns of BM} form a set that spans
R” so that if Vf(zi) # 0, then at least one of the 2n di-
rections defined by the columns of B[My, —M}] (the core
pattern) must be a descent direction from the current it-
erate. The Hypotheses on the Exploratory Moves require
that in the worst case, if we have not already found a
step that produces simple decrease, then we must look at
all 2n steps defined by ApB[My,—M;]. The update for
Ay specifies that Ay must be reduced if the Exploratory
Moves failed to produce a step giving simple decrease.
Thus we have a backtracking line search along 2n search
directions, at least one of which is a direction of descent.
It is then a simple matter to show that this process must
terminate in a finite number of iterations.

To show that pattern search methods are gradient-
related methods, we prove that the following holds for
any z # 0:

T i
max |x—s"i|,i:1,...,p > £>0,
(ESIIIEA

with

. 1
= iy s}

where k(BM) denotes the condition number of the matrix
BM. (All norms are the Euclidean vector norms.) Again
we make use of the core pattern defined by B[My, —M;],
of the fact that M; € M where M is a finite set, and
of the fact that the Hypotheses on Exploratory Moves
require that all steps satisfy z, € Ay Pg.
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The most delicate part of the analysis involves assur-
ing that the common pathologies that require step length
control mechanisms cannot occur because of the struc-
ture placed on the choice of iterates for pattern search
methods. The problem of steps that are either too long,
relative to the amount of decrease realized by the next
iterate, or too short, relative to the amount of decrease
predicted by the gradient at the current iterate [5], can-
not occur. Because the iterates lie on a lattice, which
depends on Ay, steps of arbitrary lengths along arbitrary
search directions are not possible. Thus such pathologies
cannot occur. Details of the proof can be found in [23].

Proofs of global convergence for individual pattern
search methods have appeared in the literature over the
years. The text by Céa [3] contains a proof of conver-
gence for the pattern search method of Hooke and Jeeves
while the text by Polak [14] contains a proof of conver-
gence for coordinate search with fixed step length. These
two proofs require that the step sizes be monotonically
decreasing. Yu Wen-ci [24] gives a unified analysis for
a class of direct search techniques, but it requires both
that the step sizes be monotonically decreasing and that
an “error-controlling” sequence, which plays the role of
a sufficient decrease condition, be introduced into the al-
gorithms considered—with no suggestions on how such a
sequence could be constructed in practice. As we have
demonstrated, neither restriction is necessary to obtain
global convergence results for pattern search methods.
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If
QUASI-NEWTON
then

WHY NOT QUASI-CAUCHY?
endif

by J.L. Nazareth !

1. INTRODUCTION

When Davidon’s variable-metric algorithm [4] was in-
troduced to the optimization community in the early
nineteen-sixties by Fletcher and Powell [8] its perfor-
marnce vis-a-vis other methods then popular for minimiz-
ing a smooth nonlinear function, say f(z), z € R", is
described by Powell [13] in a recent historical account as
follows: “I tried the method on some examples and the
results were stunning”.

A significant advantage of the variable-metric (more ac-
curately, metric-based quasi-Newton) algorithm derives
from its update of an approximation to the Hessian ma-
trix of second derivatives using gradient vectors at suc-
cessive widely separated iterates. Thus it only requires
first order derivative information. Its proven effectiveness
tilted the balance away from Newton’s method, which re-
quires potentially expensive Hessian evaluations or esti-
mates obtained by differences; Cauchy’s method (steepest
descent possibly with diagonal scaling), which uses only
first order derivatives and is robust, but usually quite

slow; and pattern (and cyclic) search methods, many:

with P.G. Woodhousian names'(Hooke and Jeeves, Nelder
and Mead, Rosenbrock), which are derivative-free, require
much weaker assumptions on f, are elegant and simple to
implement, but usually only work well when n is small.

Today the balance is tilting back. Newton’s method
is enjoying a resurgence fuelled by automatic differentia-
tion, see Griewank [10]. Parallel computing, along with
the need to find global minima of functions with a com-
plex topography (for example, noisy functions), has res-
urrected pattern search, see Dennis and Torczon [5]. And,
of course, Cauchy’s method has always remained a use-
ful way to guarantee convergence and is thus a fallback
measure.

In the foregoing repertoire of methods, there is an ob-
vious progression. Quasi-Newton algorithms occupy the
middle ground between Newton’s method and Cauchy’s

1Department of Pure and Applied Mathematics, Washington
State University, Pullman, WA 99164.
e-mail: nazareth@amath.washington.edu.
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method. Beyond (or beneath) are derivative-free meth-
ods, and a natural question arises: Is there also a mid-
dle ground between Cauchy’s method and derivative-free
pattern search? In full generality this question has in-
deed already been addressed, most notably in the stochas-
tic quasi-gradient algorithms pioneered by Ermoliev (see
Ermoliev and Gaivoronski [7] for an overview) with an-
tecedents in the methods of Shor [14] and others. How-
ever, these are inherently non-monotonic algorithms de-
signed especially for non-smooth functions and they em-
ploy a step-length strategy quite different from the line
search used in the usual metric-based gradient-related
descent setting. (Another interesting inherently non-
monotonic Cauchy algorithm when f is smooth is that
of Barzilai and Borwein [1].)

In contrast, our concern is with inherently monotonic
gradient-related algorithms for minimizing differentiable
functions with the added feature that the gradient vector
at any iterate, say z, is not available directly, or inex-
pensively via automatic differentiation, and for which the
option of taking n finite-differences of function values at
z (over numerically infinitesmal steps along, for example,
the coordinate axes) is prohibitively expensive.

Let us agree that by a metric-based quasi-Cauchy algo-
rithm for minimizing functions of the foregoing type we
mean an algorithm that

o develops derivative-related search directions that are
inherently directions of descent,

o employs a line search that does not require gradient
vectors,

e and utilizes a metric defined by diagonal matrices.

We discuss very simple and specific techniques for each
of these three items in the next section. A computational
experiment is described in Section 3. Finally the much
broader ramifications of these ideas are outlined in Sec-
tion 4.

2. A QC ALGORITHM

Let D be a diagonal matrix with positive diagonal el-
ements. At any point, say z with gradient vector ¢ =
Vf(), the Cauchy method uses the direction of steepest
descent in the metric defined by D, namely, —D~!g.

Now, form instead an approximation § (termed the
quasi-gradient) to g in a “natural” way that ensures that
the direction d = —D~1j is a direction of descent. Con-
duct a line search along d, update D to a diagonal matrix
Dy so as to incorporate curvature information gathered
from the line search, and then repeat the process.

2.1 Descent Direction: Within the foregoing context,
the technique for defining search direction at z will be
based a simple lemma as follows:
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Lemma: Let £ = {ej,...,ex} be a set of non-zero direc-
tions at the point z with gradient vector g, and let D be
a positive definite diagonal matrix. Let § be any non-zero
vector that approximates g in the sense that
gle;=gTe;, 1< <k

(1)
If d = —D~17 is linearly dependent on ey, ..., e then d
is a direction of descent.

Proof: From (1), (g —¢)Te; =0, i =1,...,k. Ifdis
linearly dependent on e, . .., ex then (—g)Td = 0. Thus
¢fd=—-3gTD"1g< 0. 0O.

Take 2 < k << n, and group the n coordinate vectors
into mutually exclusive blocks each containing (k — 1)
vectors, These say K blocks are used one at a time in
in a cyclic sequence. At the current iterate, say «, the
directional derivative along each vector in the the block
that comes up next in the sequence (the ‘current block’)
is estimated by finite differences in the standard way us-
ing, for example, an O(macheps'/?) step from along the
vector. In addition, as we will see in the next subsection
2.2, the line search along the previous search direction,
say d_, that found the current iterate z, will exit with
the directional derivative at z along d_, i.e., the quantity
9Td_. Thus, the set of k vectors consisting of the (k—1)
vectors in the current block and the vector d_ will con-
stitute the vectors e, ..., ex of the lemma. These vectors
have known directional derivatives at z.

The quantity g, termed the quasi-gradient, is then
found by solving the low-dimensional linear least squares
problem: minimize the euclidean norm of § subject to sat-
isfying the constraints (1). This can be done efficiently
(see also subsection 4.1).

Finally, the search direction at z is defined by d =
—D~'g. The choice of the matrix D defining the metric
is considered in subsection 2.3. The directional derivative
97d along d is obtained by a finite difference. If this
establishes that d is a direction of descent then proceed
to the line search. If not, then the lemma tells us that
d must be linearly independent of the set . Add d and
and its directional derivative to the set of directions in
the lemma that are used to obtain the quasi-gradient i.e.,
k — k+1, E — E Ud, and repeat the procedure to obtain
a new quasi-gradient g, search direction d = —D~17 and
directional derivative. Obviously it must terminate in a
finite number of repetitions with a direction of descent.

Refinements of this basic approach that rely more heav-
ily on the foregoing lemma are outlined in subsection 4.1.

2.2 Line Search: The direction d and its directional
derivative g7d are used to initiate a standard line search
based, for example, on fitting a cubic polynomial to func-
tion and directional derivative information. When the
line search defines a fresh point, say z, along the line

SIAG/OPT Views-and-News

passing through z parallel to d and requires the direc-
tional derivative, say gzd at z4, this information is 0b-
tained again by a finite difference operation. The line
search is terminated when the Wolfe conditions are sat-
isfied or, more simply, when |gTd|/|gTd| < acc where
acc € (0,1). These conditions imply (¢3d — ¢g7d) > 0.

2.3 Diagonal Metric: The metric used to define the
search direction d at z will be defined by a diagonal ma-
trix, say D, with positive diagonal elements. The line
search along d = —D~1g is entered at z with slope infor-
mation g7d and exits at z; with slope information gid.
Define s = z4 —z # 0, y = g+ — g (the vector y is not
available to the algorithm), a = sTDs > 0 and b = yTs
(available by computing b = (¢Td — gTd)(|}s||/||d||) > 0).
Note that b > 0.

The new curvature information derived from the line
search is incorporated into the updated diagonal matrix,
say Dy, that defines the metric at z; in the following
way: Let M, be the matrix obtained by updating D by
a matrix of rank one, namely,

b—a
My =D+ (a—z)DssTD, (2)
and let Dy be the diagonal matrix with (Di); =
(My)is;,i = 1,...,n. This matrix can be computed di-
rectly as follows:

b—a
(D) =D+ L2 Dsrpe,

Note that directional derivative information from the
computation of the search direction and from the line
search is being fully used, and that only ‘hard’ informa-
tion (as constrasted with ‘soft’ quasi-gradient estimates)
is used to update the metric.

The matrix M, satisfies the weak quasi-Newton (se-
cant) relation of Dennis and Wolkowicz [6]

sTMys=b=yTs.

Compare with the usual quasi-Newton relation Mis=y.
Under the foregoing conditions a > 0, b > 0, it is easy
to show that M, defined by (2) is positive definite (see
[6]). Thus Dy has positive diagonal elements. There
is a subtle difference in our usage here, because Dennis
and Wolkowicz [6] assume that the vector y is available
(their setting is quasi-Newton) and much of their theoret-
ical development involves updates defined in terms of y
or the quantity ¢ = yT D~1y. An exception is the update
labelled (4.10) in [6], which corresponds to (2) above pro-
vided b is computed from directional derivatives instead
of gradients.

Note that the foregoing matrix Dy does not in gen-
eral satisfy the weak secant relation. Much more can be
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sald about diagonal updating in a quasi-Cauchy setting
as outlined in subsection 4.2.

3. COMPUTATIONAL EXPERIMENT

The foregoing algorithm was encoded in Matlab with-
out any frills or fine-tuning, and run with the setting
acc = 0.5 in the line search, the choice (k — 1) = 5 in
the QC method, and again with the choice (k —1) = n
that in effect yielded the Cauchy method (with the di-
agonal scaling of subsection 2.3). In addition, the cyclic
coordinate descent method with a line search was imple-
mented in Matlab for purposes of comparison. The three
algorithms were run on a trignometric function, which is
a standard test problem given in More et al [11] using
the standard starting point and n = 30. (The optimal
function value is 0.)

The following table gives function evaluation counts
and corresponding function values for the three algo-
rithms, in each case recorded when the count first ex-
ceeded 500 and thereafter in approximate multiples of
100 until 1000 was exceeded.

Quasi-Cauchy Cauchy Cyclic Coord.
507 | 5.62 502 | 190.80 || 511 | 27.77
600 | 3.89 600 | 121.26 || 601 | 22.67
701 | 0.051 698 | 92.04 727 | 0.49
806 | 6.84e-4 [|-796 | 60.23 817 | 0.35
900 | 4.81e-5 || 896 | 39.26 908 | 0.34
1003 | 8.71e-7 || 1026 | 29.23 1020 | 0.013

The Matlab program can be sent by e-mail to anyone
interested in more detail, and will also serve to provide
more complete documentation of the experiment.

Of course “one swallow does not make a summer”.
Much more extensive numerical study and comparison
with other methods using, for example, the test prob-
lems in [11] is needed. Alternatively, one could apply a
QC-type technique to a practical problem to determine
its effectiveness, and indeed one of the objectives of this
article is to seek collaboration on such an application.

We should also mention here the cautionary experi-
ence reported in Carter [2] where the number of itera-
tions grows exponentially with a measure of inaccuracy
in gradient evaluation, but note also that in [2] function
values are inexact, and directional derivative information
is not exact (upto truncation error in a finite difference
estimate) in any direction.

4. DISCUSSION OF QC METHOD

4.1 Refinements: Strategies involving updating a quasi-
gradient over large steps using a non-symmetric Broyden-
type update formula is interesting theoretically but did
not prove to be effective (the gradient is not constant even
on a quadratic, in contrast to the Hessian); neither did
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updating the metric using quasi-gradients vectors (they
are themselves estimates). After winnowing out these op-
tions (an exploration facilitated by Matlab), the simpler
and more elegant algorithm of Section 3 emerged as more
promising, and it can be refined in a veriety of ways, some
of which are listed below:

1. If very little progress is made in the line search from
z along a direction, say d_, then the set of vectors
in the previous block of vectors used at z_ and their
associated directional derivatives could be included
in the set e1,...ex used at z. Clearly this will even-
tually yield a good approximation to the gradient if
performed repeatedly.

2. Additionally or alternatively, the quasi-gradient g
can be chosen to minimize the euclidean norm of
g — §—, where g_ is the quasi-gradient estimate at
z_. It is easy to construct an example where this
could result in a non-descent direction at z, bringing
the lemma of section 2.1 directly into play.

3. A basis other than the coordinate vectors can be em-
ployed. In addition, one or more randomly chosen
directions, with directional derivatives estimated by
difference along them, could be added to the set used
to estimate the quasi-gradient at each iterate. Intro-
ducing some randomization into the algorithm could
be very useful.

4. A line search along the direction defined by joining
iterates at the beginning and end of a full cycle of K
blocks, as in some pattern search methods, could be
a useful acceleration step.

5. If the set of vectors used to estimate a quasi-gradient
at an iterate does not yield a direction of descent and
must be augmented then well-known computational
linear algebra techniques can be employed to obtain
the new quasi-gradient efficiently.

4.2 The QC Relation and Diagonal Updating: Let
us define the quasi-Cauchy (QC) Relation to be the weak
secant relation sMys = b of [6] with the added restriction
that M, must be diagonal Henceforth let us write this
quasi-Cauchy relation as

sTDys=b=(g%s— gTs). (3)
We have noted that the matrix Dy of section 2.3 does
not satisfy this QC relation. However, a whole range of
variational problems can be formulated where (3) is a con-
straint that must be satisfied, and they lead to different
updates of D to D, some of which preserve positive def-
initeness. There are some interesting results concerning
the updating of diagonal matrices that can be obtained,
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and they may be of practical use in other settings, for ex-
ample, preconditioning CG algorithms as well as QCG ex-
tensions. For those diagonal updates that do not preserve
positive definiteness, one might also consider a model-
based QC approach (see [12]).

A useful background reference for diagonal updating is
Gilbert and Lemarechal [9].

4.3 Unifying Framework: The QC approach broad-
ens, in an attractive way, the Newton/Cauchy framework
discussed in [12). Thus even if the QC method does not
prove to be competitive, at the very least it will provide a
stepping stone and a natural iransition into the subject of
derivative-free methods (pattern search, simulated anneal-
ing, genelic algorithms, etc.) that deserve a larger role in
the optimization curriculum.

The topics discussed in Sections 3 and 4.1-4.3, conver-
gence analysis and connections/contrasts (Gauss-Seidel
when the function is quadratic, block cyclic coordinate
descent) are currently under investigation and will be de-
scribed in a technical report at a later date.
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CONFERENCE ON NETWORK
OPTIMIZATION PROBLEMS

A conference on network optimization problems will be
held at the Center for Applied Optimization, University
of Florida from February 12-14, 1995. The conference will
bring together researchers working on many different as-
pects of network optimization: algorithms, applications,
and software. The conference topics include diverse ap-
plications in fields such as engineering, computer science,
operations research, transportation, telecommunications,
manufacturing, and airline scheduling. Since researchers
in network optimization come from many different areas,
the conference will provide a unique opportunity for cross-
disciplinary exchange of recent research advances as well
as a foundation for joint research cooperation and a stim-
ulation for future research.

Advances in data structures, computer technology, and
development of new algorithms have made it possible
to solve classes of network optimization problems that
were recently intractable. For example, recent advances
have been made in techniques for solving problems related
to airline scheduling, satellite communication and trans-
portation, and VLSI chip design. Computational algo-
rithms for the solution of network optimization problems
are of great practical significance.

The conference will be held at the Center of Applied
Optimization, University of Florida, Gainesville, Florida.
All presentations are invited. A collection of refereed pa-
pers will be published in book form by Kluwer Academic
Publishers. Details will be available at a later time.

For further details, please contact one of the confer-
ence organizers: Bill Hager (hager@math.ufl.edu), Don
Hearn (hearn@ise.ufl.edu) and Panos Pardalos (parda-
los@ufl.edu).

CONFERENCE ANNOUNCEMENT:
ICCP-95

An International Conference on Complementarity
Problems: Engineering & Economic Applications, and
Computational Methods will be held from November 1-4,
1995 at the Homewood Campus of The Johns Hopkins
University, Baltimore, Maryland, U.S.A.

The conference is organized by: Michael C. Ferris,
University of Wisconsin at Madison (ferris@cs.wisc.edu)
and Jong-Shi Pang, The Johns Hopkins University
(jsp@vicp.mts.jhu.edu)
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The conference will bring together, for the first time,
engineers, economists, industrialists, and academicians
from the U.S. and abroad who are involved in pure, ap-
plied, and/or computational research of complementarity
problems, to present and discuss the latest results in this
subject, and to offer suggestions for collaborative research
and further development of the field.

The conference will last for 4 days, consisting almost
entirely of invited presentations. There will be a small
number of selective contributed talks and the conference
1s limited to 100 participants (including the speakers). A
refereed volume of proceedings of the conference will be
published.

There are three major themes of the conference: engi-
neering applications, economic equilibria, and computa-
tional methods. Each theme will be represented by ex-
perts in the area.

Contact one of the organizers for further details if you
are interested in participating at the conference or in con-
tributing a paper for possible presentation.

CONFERENCE ANNOUNCEMENT:
HIGH PERFORMANCE SOFTWARE

A short conference on “High Performance Software for
Nonlinear Optimization: Status and Perspectives”. will
beheld from June 22-23, 1995 (following the Workshop in
Erice on Nonlinear Optimization), and hosted by Centro
di Ricerche per il Calcolo Parallelo e i Supercalcolatorim
(CPS), a joint research center of the CNR (Consiglio
Nazionale delle Ricerche) and the University of Naples
“Federico IT”.

The conference, which will be held in Capri, Italy,
will focus on the current state of optimization software,
mainly referring to the high performance computing as-
pects. The presentations will provide an authoritative
overview of the field, including its algorithmic develop-
ments, current software and applications, and future per-
spectives. There will be a series of lectures given by in-
vited speakers including: P.Matstoms, J. J. Moré, W.
Murray, P.M. Pardalos, M. Resende, P.L. Toint, and S.
Zenios. There will also be a selection of contributed pa-
pers.

For more information or for registration, send an e-
mail message to hpsno@matna2.dma.unina.it or a let-
ter to Prof.  Almerico Murli (Head of the CPS):
Universita’ di Napoli ”Federico II” Dipartimento di
Matematica e Applicazioni, Complesso Monte S.Angelo,
ed. T, Via Cintia 80126, Napoli. Italy. E-mail:
murli@matna2.dma.unina.it.
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SUBSCRIBER HELP INFORMATION:

¢ opt-net (Optimization):
opt-net-request@zib-berlin.de with Subject “help”
and message body “EOI”.

¢ na-net (Numerical Analysis):
na.help@na-net.ornl.gov

¢ pol-list (OR/MS Practice):
pol-request@silmaril.smeal.psu.edu with message
body “help”.

SELECTED UPCOMING ARTICLES
FOR SIAM J. OPTIMIZATION

Why Broyden’s Nonsymmetric Method Terminates on
Linear Equations Dianne P. O’Leary

A New Infinity-Norm Path Following Algorithm for Lin-
ear Programming Kurt M. Anstreicher and Robert A.
Bosch

A Potential Reduction Algorithm with User-Specified
Phase I-Phase II Balance for Solving a Linear Program
from an Infeasible Warm Start Robert M. Freund

An Implicit Filtering Algorithm for Optimization of Func-
tions with Many Local Minima P. Gilmore and C. T.
Kelley

Indefinite Trust Region Subproblems and Nonsymmet-
ric Eigenvalue Perturbations Ronald J. Stern and Henry
Wolkowicz

A Reduced Hessian Method for Large-Scale Constrained
Optimization Lorenz Biegler, Jorge Nocedal, and Claudia
Schmid

A Robust Trust-Region Algorithm with a Nonmonotonic
Penalty Parameter Scheme for Constrained Optimization
Mahmoud El-Alem

A Class of Trust Region Methods for Nonlinear Optimiza-
tion Problems A. Sarienaer

Ladders for Traveling Salesmen Sylvia C. Boyd, William
H. Cunningham, Maurice Queyranne, and Yaoguang
Wang

On the Convergence of Fenchel Cutting Planes in Mixed-
Integer Programming £. Andrew Boyd

Proximal Decomposition on the Graph of a Maximal
Monotone Operator Philippe Mahey, Said Oualibouch,
and Pham Dinh Tao

On the Simulation and Control of Some Friction Con-
strained Motions Roland Glowinski and Anthony J.
Kearsley

Global Convergence of a Long-Step Affine Scaling Al-
gorithm for Degenerate Linear Programming Problems
Takashi Tsuchiya and Masakazu Muramatsu

SIAG/OPT Views-and-News

On Eigenvalue Optimization Alezander Shapiro and
Michael K. H. Fan

Incorporating Condition Measures into the Complexity
Theory of Linear Programming James Renegar

The Linear Nonconvex Generalized Gradient and La-
grange Multipliers Jay S. Treiman

Taylor’s Formula for C 1 Functions Dinh The Luc
Nonpolyhedral Relaxations of Graph Bisection Problems
Svatopluk Poljak and Franz Rendl

A Sequential Quadratic Programming Algorithm Using
an Incomplete Solution of the Subproblem Walter Murray
and Francisco J. Prieto

Data Parallel Quadratic Programming

on Box-Constrained Problems Mike P. McKenna, Jill P.
Mestrov, and Stavros A. Zenios

Local Convergence of SQP Methods in Semi-infinite Pro-
gramming G. Gramlich, R. Heltick, and E. W. Sachs
Faster Simulated Annealing Bennett L. Foz

CONTRIBUTIONS TO THE V&N

The next issue (Fall, 1995) will include essays by Dim-
itri Bertsekas (MIT; preview of new book and a discus-
sion of optimization trends) and Paul Frank (Boeing; on
expensive function optimization using interpolation mod-
els).

Articles contributed by SIAG/OPT members are al-
ways welcome and can take one of two forms:

a) Views: short, scholarly, N3 (Not Necessarily Non-
controversial) essay-type articles, say 2 to 4 pages long,
on any topic in optimization and its interfaces with the
sciences, engineering and education. A contribution on
methods discussed in the feature article (page 1) for the
neztl issue would be especially appreciated.

b) News: brief items for the Bulletin Board Section.

Our first preference is that a contribution take the form
of a LaTeX file sent by email to the editor at the address
given below. (If possible try it out in two-column format.)
However, other forms of input are also acceptable.

The deadline for the next issue is October 1, 1995.

Larry Nazareth, Editor

Department of Pure and Applied Mathematics
Washington State University

Pullman, WA 99164-3113

email: nazareth@alpha.math.wsu.edu
or nazareth@amath.washington.edu




